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1.  INTRODUCTION 

 

1.1   INTRODUCTION  

The Design of Experiments plays a key role in any scientific investigation. In early 

development stages, in the theory of experimental designs, only few designs were needed 

primarily for their applications in agricultural experiments. Subsequently their utility was found 

in various fields like physical, biological, sociological and engineering studies. As a result, many 

of the designs were developed with the increase of applications of experimental designs in 

Science & Technology, Medicine, Social Sciences, and Industry etc.   

Response Surface Methodology is a collection of mathematical and statistical techniques 

developed by Box and Wilson in 1951 to find optimal settings of input factors or design 

variables that maximize or minimize or target measured response variables.  The study to 

investigate the functional relationship between the response and the factor combination is known 

as response surface study. The response variable is a measured quantity whose value is assumed 

to be affected with changing the levels of the factors.  Mathematically the response function is 

denoted as y = f (x1, x2, … xv) + , where f (x1, x2, … xv) is a polynomial function of degree k 

with v factors. The purpose of response surface is to determine and quantify the relationship 

between the values of one or more measurable response variable(s) and settings of a group of 

experimental factors presumed to affect the response(s) and also to find the settings of the 

experimental factors that produce the best value or best set of values of the response(s). 

When the degree of polynomial increases, the size of the response surface design model 

also increases, then the complexity of analysis increases and the model is relatively inaccurate in 

higher dimensions, which leads to problem of dimensionality.  The Dimensionality Reduction of 
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model is minimizing the number of factors in the model with minimum loss of information in the 

data which is useful for concentrating on the detailed analysis about the significant factors in the 

model. 

 

1.2   SELECTION OF BEST REGRESSION PROCEDURES 

1.2.1 All Possible Regression:   Let Y be the response variable and X = (X1, X2, ….Xp) be the 

vector of predictors.  Assume Y and X are linearly related.  The number of all possible 

combinations of linear functions existing are 2p between the response and predictor variable(s) 

(each model includes the constant term).  Examine R2, Se
2 and Cp statistic for each of the fitted 

model and select the best model among them. 

1.2.2 Forward Selection: This Procedure begins with no predictors in the model except an 

intercept.  Variables are checked one at a time and the most significant variable is added to the 

model at each stage.  Select the maximum correlated variable with the response from the set of 

predictor variables and fit the model and test its significance.  Compute the partial F-test for each 

of the independent variable which are not in the model and select the largest partial F value and 

compare this with a preselected value (F1) for some α.  If this value is greater than the 

preselected value then add this variable to the equation.  The procedure is terminated when no 

independent variables in the equation have no significant contribution to the response variable. 

1.2.3 Backward Elimination:  Backward elimination procedure works in opposite direction of a 

Forward selection procedure.  In this procedure, we begin with a model that contains all the 

predictors.  Computing the partial F-test for each of the independent variables and select the 

lowest partial F value and compare this with a preselected value (F1) for some α.  If this value is 

less than the preselected value then remove the variable from the equation.  Repeat the procedure 
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until all the independent variables in the equation provides significant contribution to the 

response variable. 

1.2.4 Step-wise Regression:  This procedure is a combination of Forward and Backward 

procedures, in which at each step the predictor is selected with highest partial correlation with 

the response and examine its significance.  The procedure terminates when the smallest partial F-

value is greater than a preselected value and the smallest partial F-value of the next best predictor 

less than a preselected value.  

 

1.3    SUMMARY OF THE REPORT 

This report is devoted to study the Reduction of Dimensionality of Response Surface 

Design Model and its reduction in Bayesian Approach.  The presentation of research work done 

is organized in six chapters.  The present chapter of the thesis provides a brief introduction of 

Response Surface Design with a bird’s eye view of some of the useful methods and chapter-wise 

summary of the report. 

In Chapter – 2, an introduction to response surface design models and its Analysis and 

complete literature available on the Reduction of Dimensionality of Regression model and 

Response Surface Design Model for first and second order are presented briefly. Few major 

methods used for the reduction of size of the model (regression model and response surface 

model) with suitable examples is presented. An attempt is made to compare the various methods.  

In Chapter – 3, the basic concepts for Bayesian theory, the Bayesian approach for the  

estimation of parameters of a simple and multiple regression model, Bayesian simulation 

algorithms like Gibb Sampler, Metropolis Hastings algorithm etc and the role of Bayesian theory 

for selecting the variables are presented.  A brief review on Bayesian variable selection proposed 
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by different authors are listed and also three Bayesian variable selection methods are described 

for selecting the significant factors of a regression model with suitable illustrations. An 

introduction to simulation software and a comparison of various Bayesian variable selection 

procedures is presented.  

In Chapter – 4, variance of estimated response for first and second order response surface 

design models with the restrictions on the moment matrix is presented. Variance component 

indices for first order and second order response surface design models with restrictions on the 

moment matrix of the design are derived. Proportion of variance indices for first and second 

order response surface design models with and without restrictions on the moment matrix are 

illustrated with suitable examples. 

In Chapter - 5, a brief introduction for response surface design and the necessity for 

reduction of dimensionality and the concept of multi-collinearity is discussed.  In section 5.2 and 

section 5.3 an attempt is made to reduce the size of first and second order response surface 

design model with detailed step by step procedure of finding the best choice model with 

significant factors is illustrated with suitable examples under imposing and not imposing 

restrictions on moment matrix in nested approach is presented in theoretical, algorithmic 

approach.  To compare estimated parameters with various existed regression methods is 

presented in the last section 5.5. 

In chapter - 6, a brief introduction of Bayesian procedure and Bayes theorem is presented.  

In section 6.2 an attempt is made to propose the reduction size of the first and second order 

response surface design model by estimating its parameters in Bayesian approach using 

simulation procedures and the method is illustrated with suitable examples with and without 
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restrictions imposed on the moment matrix.  An attempt is made to compare the various existing 

methods are presented in the last section 6.5.  

In chapter - 7, conclusions on the reduction in Dimensionality of Response Surface 

Design Model and its future scope using Machine learning are presented.  Programs used for 

estimating the parameters using Bayesian approach and evaluation of posterior probability are 

presented in Appendix. An up to date literature used is presented in the bibliography. 
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2. REVIEW ON REDUCTION OF DIMENSIONALITY OF  

RESPONSE SURFACE DESIGN MODEL 

 

 

2.1 INTRODUCTION   

 

Let x1, x2, … , xv are ‘v’ factors each has ‘s’ levels for experimentation and D denote the 

design matrix of the combination of the factor levels, given by 

D = ( ( xu1, xu2, … , xuv) )    (2.1.1) 

where xui be the level of the ith factor in the uth factors combination (i=1, 2, ... v; u =1, 2 … N).  

Let Yu denote the response at the uth combination.  The factor-response relationship is given by 

E(Yu) = f(xu1, xu2, … , xuv)    (2.1.2) 

is called the response surface. Design used for fitting the response surface models are termed as 

‘Response Surface Design’. The functional form of the response surface may be first order, 

second order, etc. The general Response Surface Design Model for the given responses is 

Y = Xβ + ε      (2.1.3) 

where, 

YNx1= [ Y1 Y2 … YN ] ' is the vector of responses, 

 XNk is the design matrix, 

 βk1 is the vector of parameters and 

 εN1 = [ ε1, ε2, ... , εN ] ′ is the vector of random errors and follows N(0, σ 2I). 

2.1.1 First Order Response Surface Design Model:  The first order response surface design 

model at the uth design point is 
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 Yu = 0 + 1xu1 + 2xu2 + …. ….  + vxuv + εu               (2.1.4) 

where, 

Yu is the response at uth design point Xu, (u = 1, 2, … , N)  

X = 


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be the design matrix and  

β = (β0, β1, β2, … βv) is the vector of parameters 

εu is the random error corresponding to Yu at uth design point. 

Then the estimated response at uth design point is YX'X)X(X'ˆ 1u and variance 

covariance matrix of 
u̂ is V (

u̂ ) = (XX)-1 σ2. The moment matrix (XX) is   

 

    

                        (2.1.5) 

 

 

The variance of the predicted response at the uth design point is: 

             (2.1.6) 

Suppose the restrictions are imposed on X'X given in (2.1.5) towards reaching to 
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       X′X   =     
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Then the variance of the estimated response at the uth design point is   

      V (Ŷu) = V (
0β̂ ) + V (

iβ̂  ) 


v

1i

2

uix       (2.1.7) 

where,    V (
0β̂ ) = σ2/N ,        V (

iβ̂ ) = σ2/ N2     for i = 1, 2, . . . v. 

2.1.2 Second Order Response Surface Design Model:  The second order response surface 

design model at the uth design point is  

Yu = 0 +


v
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

v
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where,  

Yu is the response at the uth design point, 

X=
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 be the design matrix  

xu = (1, xu1, xu2, … xuv, x
2

u1, x
2

u2, … x2
uv, xulxu2, …  xuv-1xuv) be the uth row of X 

β = (β0, β1, β2, … βv, β11, β22, … β vv, βl2, … βv-1v)' be the vector of parameters 

εu is the random error corresponding to Yu.  

Then the estimated response at uth design point is YX'X)X(X'ˆ 1u and variance 

covariance matrix of u̂ is V ( u̂ ) = (XX)-1 σ2. The moment matrix (XX) is 
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The V(Ŷu) is not in a simplified form as the elements in moment matrix are in higher 

order, hence imposing the restrictions on the moment matrix that all odd power summations are 

zero, towards reaching to near orthogonality, i.e. 
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The variance of the estimated response at the uth design point is  



15 | P a g e  
 

V (Ŷu) = V ( 0β̂ ) +2 V(
iβ̂ ) + [ 4–2



v

ji

2

uj

2

uixx ] V(
iiβ̂ ) +



v

ji

2

uj

2

uixx V( ijβ̂ ) + 2 Cov( 0β̂ , iiβ̂ )2    

       + 2  Cov(
iiβ̂ , jjβ̂ )



v

ji

2

uj

2

uixx         (2.1.9) 

where, 
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If the variance of the estimated response at any design point is a function of ρ2, i.e. the distance 

from design point to the origin.  Then the design is called second order rotatable design.  In other words, 

it follows that V(Ŷu) at points equidistant from the centre are same. If c=3, the variance of estimated 

response can be expressed in the form of a function of ρ2 as 

V(Ŷu) = Aρ4 + Bρ2 + C    (2.1.11) 
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2.2  REVIEW ON REDUCTION IN DIMENSIONALITY OF MODEL 

 

When the number of factors and order of model are increasing, the difficulty level of the analysis 

of the response surface design model increases. It leads to the problem of dimensionality of the model. If 

the experimenter is interest to study only a few factors (or its combinations) and it is possible to eliminate 

the insignificant factors or its combinations from the model, which are not affecting much the response, 

then the size of the model can be reduced. It minimizes the time, cost, effort and data complexity with 

little loss of information.   

Some of the well known dimensionality reduction techniques are Principal Component Analysis, 

Factor Analysis, Multidimensional Scaling, Discriminant Analysis, projection pursuit method etc. Most of 

the literature is found on the reduction of the dimensionality of Regression Models.  No theoretical work 

has been carried out on the Response Surface Design Model reduction. 

2.2.1 Reduction in size of Regression Model:  Several researchers made attempts on the reduction of 

dimensionality of regression models.  Some of them are:  Friedman and Tukey (1974), Hastie and 

Tibshirani (1984), Breiman, et. al (1984), Diaconis and Friedman (1984), Breiman and Friedman (1985), 

Stone (1985, 1986), Engle, et. al (1986), Chen (1988), Loh and Vanichsetakul (1988), Haste and Stuetzle 

(1989),  Saund (1989), Kramer (1991), Lin (1991), Foster and George (1994), Tibshirani (1996), Jin and 

Shaoping (2000), Li et. al (2000), Fan and Li (2001), Cheng and Wu (2001), Fan and Li (2002), Broman 

and Speed (2002),  Efron, et. al (2004), Janathi, et. al (2004), Zou and Hastie (2005), Yuan and Lin 

(2006), Steel and Uys (2007), Wu and Liu (2009), Xu and Ying (2010), Radchenko and James (2011), 

Tengfei Long and Weili Jiao (2012), Luan Jaupi (2014), Parpoula Christina, et. al (2014), Tengfei Long, 

et. al (2014).  

Friedman and Tukey (1974) proposed a projection pursuit method for the reduction of dimensionality. 

This method searches for linear projection onto the lower dimensional space that robustly reveals 

structures in the data. The fundamental idea behind projection pursuit is to search linear projection of the 

data onto a lower dimensional space their distribution is “interesting”; interesting is defined as being “far 
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from the normal distribution”, i.e. the normal distribution is assumed to be most uninteresting. The degree 

of “far from the normal distribution” is defined as being a projection index.       

Hastie and Tibshirani (1984) proposed a flexible method to identify and characterize the effect of 

potential prognostic factors on an outcome variable in clinical trials. These methods are called generalized 

additive models.  In Logistic Regression models, the effects of prognostic factors xj are expressed in 

terms of a linear predictor of the form jjxβ .  The additive models replaces  jjxβ with 

 )(xf jj where fj is an unspecified non-parametric function.  This function is estimated in a flexible 

manner using a scatter plot smoother.  The estimated function of fj(xj) can reveal possible nonlinearities in 

the effect of xj.  Breiman et.al.  (1984) proposed a tree-structured approach in which a regression model 

can be reduced by constructing tree by splitting the data with respect to the characterization at each step, 

with a partition of the entire data into several homogeneous groups.  Since one can split the data in many 

possible ways, this leaves a great deal of flexibility criterion seems to project which are close to Gaussian.  

Diaconis and Friedman (1984) proposed a method of distribution of Projections. Most of the results are 

stated for one-dimensional projections. The data is set by projections and categorized into Gaussian (or 

nearly Gaussian) and non Gaussian projections.  

Breiman and Friedman (1985) proposed the Alternating Conditional Expectation algorithm for 

estimating the transformations of a response and a set of predictor variables in multiple regression which 

produce the maximum linear effect between the transformed independent variables and response variable 

which gives the data analyst insight into the relationships between the variables, so that the relationships 

between them will be best described and nonlinear relationships can be uncovered.  Stone (1985, 1986) 

developed the additive regression model for easier interpretation of the contribution of each explanatory 

variable and may be preferable to a fully nonparametric regression model for a moderate sample size.   

Engle et.al. (1986) proposed a class of partial spline curve models for smoothing data with reduced 

dimensions.  
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      Chen (1988), Loh and Vanichsetakul (1988), constructed trees based on the information 

provided from the learning sample of objects with known class for each of the components of 

classifier construction using factor analysis and principal component analysis methods.   

Hastie and Stutzle (1989) proposed the concept of a principal curve and developed a concrete 

algorithm to find the principal curve, which is represented by a parametric curve. The principal 

curves of a given distribution are not always unique.  Saund (1989) used a three layer neural 

network with a single hidden layer which he called a “connectionist network”. While training the 

network, he noticed that in order to obtain a good dimensionality reduction, we need to identify 

the most effective number of units in the middle bottleneck layer but, he does not provide us with 

a way of directly identifying it.    

Kramer (1991) proposed a non linear principal component analysis approach for training the feed 

forward network to obtain an identity mapping using sequential networks in cascade. Each network has 

single bottleneck layer and the output of one is fed into the second and the whole network is trained.  Lin 

(1991) proposed sliced inverse regression for selecting the choice of variables in the regression model. 

Foster and George (1994) developed a new criterion called the risk inflation, is the maximum possible 

increase in risk of the consequent selection or estimation procedure for selecting correct predictors which 

is used for the evaluation of variable selection procedures in multiple regression. Tibshirani (1996) 

proposed a new technique called Lasso - “least absolute shrinkage and selection operator” for estimating 

the parameters in the model so that it shrinks some of the coefficients to zero and hence try to retain the 

good features of both subset selection and ridge regression.  In general, the idea of Lasso is extended to 

generalized regression models and tree-based models. 

Jin and Shaoping (2000) used neural network approach for reduction of dimensionality for Chinese 

character recognition.  Li et. al (2000) proposed iterative Tree-Structured regression for finding a 

direction, along which the regression surface bends. The direction is used for splitting the data into two 

regions, within each region another direction is found and the partition is done in the same manner. The 
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process continues recursively until the entire regressor domain is decomposed into regions, where, the 

surface no longer bends significantly and linear regression fit becomes appropriate. For implementing the 

direction search, the Principal Hessian directions are used.   

Fan and Lin (2001) proposed a unified non-concave penalized likelihood least squares 

regression approach called SCAD which performs variable selection and regression coefficient 

estimation simultaneously. Cheng and Wu (2001) made an attempt on factor screening and 

response surface exploration sequentially.  This method is based on two stage analysis, even 

though it is based on two stage, it consists of three parts: screening analysis in stage 1, projection 

that links between stages 1 and 2 i.e. screening a larger number of factors and the more intensive 

study of the response surface over a smaller number of factors, and response surface exploration 

in stage 2.     

Fan and Lin (2002) made an attempt on two new variable selection methods based on Fan and Lin 

(2001) paper and this non-concave penalized likelihood approach is extended to the Cox proportional 

hazards model and Cox proportional hazards frailty model which are used for survival analysis.  And 

finally conclude that this new methods have better theoretic properties and finite sample performance.  

Broman and Speed (2002) focused on back-cross designs by considering the problem of identifying the 

genetic loci (known as quantitative trait loci QTLs) by reducing multi dimensional data to one 

dimensional data. 

Efron, et. al (2004) developed a Least Angle Regression (LARS) algorithm for linear regression 

model which relates to the classic model selection method.  And had given some modifications that turn 

LARS into Lasso or Stage-wise.  Janathi, et. al (2004) described a method for data dimensionality 

reduction in non-linear projection of multidimensional data using a multi-layer neural network in auto-

associative mode with a fast updating rule, based on a conjugate gradient algorithm.  This connectionist 

approach gives an effective result in data dimensionality reduction when compared to principal 
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component analysis method. And it has been demonstrated with an application to remotely sensed 

imagery (Landsat TM image of Ke´nitra region Morocco). 

Zou and Hastie (2005) proposed a new technique called elastic net for the regression model which 

performs both automatic variable selection and continuous shrinkage.  It selects the group of correlated 

variables and is like a stretchable fishing net that retains ‘all the big fish’. 

Yuan and Lin (2006) focused on the accuracy of estimation and extended the Lasso, the LARS 

algorithm and non-negative garrote for selecting the grouped variables (factors) in regression.  And also 

proposed the efficient algorithms for the extensions of these methods for factor selection and showed that 

these extensions give superior performance to the traditional methods in regression.  And also studied in 

detail about the similarities and differences between these methods with suitable illustrations.  

Steel and Uys (2007) studied the influence measures based on Mallows’ Cp statistic and Akaike’s 

information criteria (AIC) for selecting the influence of an individual data in multiple linear regression. 

Wu and Liu (2009) developed variable selection in penalized quantile regression  and extend the oracle 

properties of the SCAD and Adaptive – LASSO penalties to this quantile regression. Xu and Ying (2010) 

considered the median regression with a lasso type penalty term for variable selection and proposed two 

stage methods with fixed number of variables for simultaneous estimation and variable selection.  

Radchenko and James (2011) proposed two variable selection methods, one is on Lasso, which 

computes highly shrunk regression coefficients and the other is based on Forward Selection, which uses 

no shrinkage on regression coefficients. From these two, Forward-Lasso Adaptive SHrinkage (FLASH) 

which includes both Lasso and Forward selection as special cases. 

Tengfei Long and Weili Jiao (2012) solved the problem of Rational Functional Model consisting of 

78 Rational Polynomial Coefficients (RPCs).  They made an attempt to reduce the size of the rational 

functional model by converting the given polynomial into multiple linear regression model.  The 

significant RPCs are selected one by one according to the criteria of goodness of fit. 

Luan Jaupi (2014) made an attempt on the variable selection for Multivariate Statistical Process 

Control in two different approaches.  One is on variable selection with pre-assigned role by assuming a 
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two class system to classify the variables as primary and secondary based on different criteria.  Then a 

double reduction of dimensionality is applied to select relevant primary variables that represent the whole 

set of variables.  And the second one is on variable selection with Cost-utility Analysis, which is used to 

compare different variable subsets that might be used for process monitoring.  The subset of relevant 

variables is selected in a manner such that the structure and information carried by the full set of original 

variables.  

Parpoula Christina et. al. (2014) focused and discussed on the problem of selecting the significant 

variables in regression using SCAD, LASSO and Hard methods by using Supersaturated Designs (SSDs).  

These methods are much faster and provide more effective than penalized likelihood methods.  Tengfei 

Long, et. al (2014) proposed an automatic variable selection of Rational Polynomial Coefficients (RPCs) 

based on nested regression and goodness of fit is used to evaluate the coefficients and applied the method 

on remote sensing images which includes (Quick Bird, SPOT5, Landsat-5, and ALOS). 

2.2.2 Reduction in size of Response Surface Design Model:  Only few authors made attempts on the 

reduction of size of the response surface design models. Kaufman, et. al (1996), Homma and Saltelli 

(1996), Venter, et. al (1998), Vignaux and Scott (1999), Lacey and Steele (2006) etc have studied on the 

reduction of the number of factors (or factor combinations) in the fitted response surface models for some 

experimental data.  But, no much theoretical work is done on reduction of dimensionality in response 

surface designs and on its analysis. 

Kaufman et. al (1996) proposed the variable complexity modelling approach is adapted for 

use with response surface approximation techniques.  These methods are applied to 

multidisciplinary design of a High Speed Civil Transport (HSCT).  Homma and Saltelli (1996) 

deal with new method of global sensitivity analysis of nonlinear models.  In particular, global 

sensitivity analysis techniques are explored.  By using FAST and Sobol series developments, the 

total variance is divided into sum of terms of increasing dimensionality. Computations of indices 

are done by Monte Carlo. 
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Venter, et. al. (1998) considered the data on the modelling of a plate with an abrupt change in 

thickness for a mechanical problem and fitted the data for linear response surface model and 

tried to reduce the number of variables using finite element analysis approach by solving the 

equations obtained through the boundary conditions. They reduced the number of variables from 

nine to seven.  Vignaux and Scott (1999) proposed a method using statistical data from a survey.  

Lacey and Steele (2006) applied the method of several engineering case studies including FE based 

example Show that better accuracy of the Response surface Designs can be obtained by using non 

dimensional variables. 

 

2.3  METHODS FOR REDUCTION IN DIMENSIONALITY OF MODEL 

In this section, popular methods proposed by the researchers used for the 

reduction of the size of the regression / response surface model are reviewed in detail with 

suitable examples.  

METHOD 2.3.1: Saltelli and Chan (2000) proposed a method to reduce the size of the multiple 

regression models by eliminating some insignificant variables. A multiple regression model Y = f(X) + ,  

with ‘p’ explanatory variables (X) and response variable (Y) is considered with E(Y) = f(X). Standardize 

each input variable such that the inputs are normally distributed with mean zero and variance unity. The 

estimated coefficients of variables in the model will provide an insight into the relative significance of the 

inputs. For a standardized model, the square of the regression coefficients  2

iβ  provides an estimate of 

a sensitivity index ( Si ), which helps for ranking the input factors. Compute R2 values and test the 

parameters for their significance to the reduction of size of the model. The method is illustrated in the 

example 2.3.1. 
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EXAMPLE 2.3.1:  Let Y be the response variable measured along with its dependent variables X1, X2. 

X3, X4, X5, X6 and X7 (Draper and Smith (1998)). The response and its associated independent variables 

observed for a sample of size 15 is presented below. 

Table 2.3.1 

S.No Y X1 X2 X3 X4 X5 X6 X7 

1 201 4.46 4.42 4.23 4.1 4.56 4.37 4.11 

2 224 4.11 3.82 3.29 3.6 3.99 3.82 3.38 

3 301 3.58 3.31 3.24 3.76 4.39 3.75 3.17 

4 301 4.42 4.37 4.34 4.4 3.63 4.27 4.39 

5 301 4.62 4.47 4.53 4.67 4.63 4.57 4.69 

6 309 3.18 3.82 3.92 3.62 3.5 4.14 3.25 

7 311 2.47 2.79 3.58 3.5 2.84 3.84 2.84 

8 311 4.29 3.92 4 3.76 2.76 4.11 3.95 

9 312 4.41 4.36 4.27 4.75 4.59 4.41 4.18 

10 312 4.59 4.34 4.24 4.39 2.64 4.38 4.44 

11 333 4.55 4.45 4.43 4.57 4.45 4.4 4.47 

12 351 3.71 3.41 3.39 4.18 4.06 4.06 3.17 

13 411 4.28 4.45 4.1 4.07 3.76 4.43 4.15 

14 424 4.24 4.38 4.35 4.48 4.15 4.5 4.33 

15 424 4.67 4.64 4.52 4.39 3.48 4.21 4.61 
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The sample correlation matrix is  

  Y X1 X2 X3 X4 X5 X6 X7 

Y 1.000 0.092 0.222 0.316 0.322 -0.155 0.302 0.276 

X1 0.092 1.000 0.901 0.673 0.736 0.291 0.677 0.897 

X2 0.222 0.901 1.000 0.852 0.740 0.278 0.835 0.936 

X3 0.316 0.673 0.852 1.000 0.757 0.093 0.882 0.911 

X4 0.322 0.736 0.740 0.757 1.000 0.437 0.812 0.822 

X5 -0.155 0.291 0.278 0.093 0.437 1.000 0.277 0.178 

X6 0.302 0.677 0.835 0.882 0.812 0.277 1.000 0.843 

X7 0.276 0.897 0.936 0.911 0.822 0.178 0.843 1.000 

 

When a linear regression model is fitted to the data, estimates of the standardized regression 

coefficients are given as 1β̂ = -2.256; 2β̂ = 1.466; 
3β̂ = -1.690; 4β̂ = 0.910; 

5β̂ = - 0.450; β̂ 6= -0.125; β̂ 7 = 

1.907. The squares of the respective regression coefficients are: 5.089536, 2.149156, 2.8561, 0.8281, 

0.2025, 0.015625, 3.636649. The parameters are tested for their significance based on the R2 values that 

show percentage of output variation corresponding to each parameter in the model. As the parameter 

corresponding to the variable X6 is insignificant, it is eliminated from the model to reduce its size. 

 

METHOD 2.3.2:  Mc Kay (1999) proposed a method using the correlations. Consider a multiple linear 

regression model Y = f(X) + ,  with ‘p’ explanatory variables (X) and response variable (Y). Assume the 

relationship between Y and X as E(Y) = f(X). Let ry,xi be the correlation coefficient between the response 

variable (Y) and its associated variable (Xi).  Evaluate the contribution of variance of each factor (Xi) 

with the output variance. Reduce the the size of the model by eliminating the factors from the model 

based on the strength and significance of the correlation between variables Y and Xi and contribution of 

the variance proportioned variance. The method is illustrated in the example 2.3.2. 
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EXAMPLE 2.3.2: Consider the data presented in Example 2.3.1, The correlation between the response 

and independent variables is {r(X1,Y), r(X2,Y),  r(X3, Y), r(X4 ,Y), r(X5,Y), r(X6,Y), r(X7,Y)}={ 0.092 0.222,  0.316, 

0.322,  - 0.155, 0.302, 0.276 }. The contribution of variances of the variables are examined which reduces 

the size of the model by eliminating X6. 

 

METHOD 2.3.3: Lin (1991) proposed a method called linear projection method. The detailed step by 

step procedure is presented below. 

Step 1: Standardize the input vector of variables x as z = ( xx̂ )-½ (x - x ) , where xx̂ is the sample 

covariance matrix and x  is the sample mean. 

Step 2: Partition the range of response (y) into k slices I1, I2… Ik. Obtain the projection pursuits in p-

dimensions for each slice as α = (α1
i
 , α2

i
 , … ,  αp

i 
) for i= 1, 2, … , k 

Step3:  Obtain the variance-covariance matrix for the projection matrix α. Then, obtain the Eigen values 

and select first few largest eigen values and obtain their normalized Eigen vectors iê , i= 1, 2, …, 

m.  

Step 4: Obtain iβ̂ = iê ( xx̂ ) -½ as direction estimates of the effective dimension reduction. 

Remark: It is a simulated method so it has more complexity. 

METHOD 2.3.4: This is a sensitivity method developed by Sobol (1993) to reduce the size of the model.  

The detailed step by step procedure for the evaluation of sensitivity indices is presented below. 

Step-1: Consider a regression model Y= f (X) with X = (X1, X2,  … , Xp ) as the input vector of variables 

and Y the response variable. Let y = (y1, y2, … , yn) be the vector of responses observed on the 

vector of variables X. Let the model be in the form  

f (x) = 0 + ∑ i xi +∑∑ ij xi xj + … … … + 12…k. (x1 x2 … xp)  
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Step2: Decompose the variance D into partial variances associated with the each random input 

component as per the model.  

i.e., D    =  Di  +  Dij  +… + D12 …p, 

Step3: Compute the sobol sensitivity indices as proportion of the variances of parameters to total 

variance. Based on these indices, eliminate the component from the model, if it is negligible. 

EXAMPLE 2.3.4: Consider the problem related to the two stage chemical process with five factors given 

by Box and Draper (1986),  the variables under study are temperatures at two stages: X1 and X2,  times of 

reactions at the two stages: X3 and X4,  and the   concentration of one of the treatments at the first stage: 

X5 . 

Table 2.3.2 

Design Points X1 X2 X3 X4 X5 Response (Y) 

1 -1 -1 -1 -1 1 49.2 

2 1 -1 -1 -1 -1 51.2 

3 -1 1 -1 -1 -1 50.4 

4 1 1 -1 -1 1 52.4 

5 -1 -1 1 -1 -1 49.2 

6 1 -1 1 -1 1 67.1 

7 -1 1 1 -1 1 59.6 

8 1 1 1 -1 -1 67.9 

9 -1 -1 -1 1 -1 59.3 

10 1 -1 -1 1 1 70.4 

11 -1 1 -1 1 1 69.6 

12 1 1 -1 1 -1 64.0 

13 -1 -1 1 1 1 53.1 

14 1 -1 1 1 -1 63.2 

15 -1 1 1 1 -1 58.4 

16 1 1 1 1 1 64.3 

17 3 -1 -1 1 1 63.0 

18 1 -3 -1 1 1 63.8 
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Table 2.3.2 

Design Points X1 X2 X3 X4 X5 Response (Y) 

19 1 -1 -3 1 1 53.5 

20 1 -1 -1 3 1 66.8 

21 1 -1 -1 1 3 67.4 

22 1.23 -0.56 -0.03 0.69 0.7 72.3 

23 0.77 -0.82 1.48 1.88 0.77 57.1 

24 1.69 -0.3 -1.55 -0.5 0.62 53.4 

25 2.53 0.64 -0.1 1.51 1.12 62.3 

26 -0.08 -1.75 0.04 -0.13 0.27 61.3 

27 0.78 -0.06 0.47 -0.12 2.32 64.8 

28 1.68 -1.06 -0.54 1.5 -0.93 63.4 

29 2.08 -2.05 -0.32 1 1.63 72.5 

30 0.38 0.93 0.25 0.38 -0.24 72.0 

31 0.15 -0.38 -1.2 1.76 1.24 70.4 

32 2.3 -0.74 1.13 -0.38 0.15 71.8 

  

 Consider the first order response surface model to be fitted as  

Y =βo+ 1X1 + 2X2 + 3X3 + 4X4 + β5X5 

The least squares estimates of the un-standardized parameters are 0β̂ = 59.687; 1β̂ = -2.188; 

2β̂ =0.792; 
3β̂ = 1.773; 4β̂ =2.411; 

5β̂ = 1.267; and the standard errors of the estimated parameters are 

1.409, 1.078, 1.150, 1.121, 1.146, 1.146.  The proportion of variance indices corresponding to the 

parameters are s0 =1.158; s1 =0.677; s2 =0.776; s3=0.854; s4= 0.766; s5 = 0.766, which are used for ranking 

the parameters iβ ’s to reduce the model. 

 

METHOD 2.3.5:  Homma and Saltelli (1996) made an attempt to reduce the size of the response surface 

design model using sobol sensitivity indices. The detailed step by step procedure is presented below. 
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Step 1:  Let Y = f (X) be the response surface design model, in the form of Y = Xβ + ε, where Y N1= (Y1, 

Y2,  … , YN)' be the vector of observations corresponding to the N treatment combination of ‘p’ 

factors (X1, X2, …, Xp) and X be the design matrix. Assume the model contains k components.  

Step-2: Estimate the vector of parameters in the model and evaluate the variances of each component Ci 

in the model and the variance of estimated response V(Ci). 

Step-3: Compute the ratio’s of individual component variance to total variance, i.e.   Si = V(Ci) / V( Ŷ ) 

for i= 1, 2, … k 

Step-4:  Eliminate the components whose ratio indices Si ‘s are insignificant. 

EXAMPLE 2.3.5:  A chemical engineer is investigating the yield (Y) of a process, processed through 

each of the process variable Temperature (
0c), Pressure (Psig), and Catalyst Concentration (g/l)  was  run 

at a low and a high level, and the engineer decides to run a 23 design with four center points. The process 

variables coded in terms of levels 1 for each of the design factor. The design and the resulting yields are 

presented in Table 2.3.3.   

Table 2.3.3 

S.No. 

Natural Variables Coded Variables Yield 

Temperature 

(0c) 

Pressure 

(Psig) 

Catalyst  

Concentration 

(g/l) 

X1 X2 X3 Y 

1 125 41 14 -0.75 -0.95 -1.133 32 

2 158 40 15 0.9 -1 -1 46 

3 121 82 15 -0.95 1.1 -1 57 

4 160 80 15 1 1 -1 65 

5 118 39 33 -1.1 -1.05 1.14 36 

6 163 40 30 1.15 -1 1 48 

7 122 80 30 -0.9 1 1 57 

8 165 83 30 1.25 1.15 1 68 

9 140 60 22.5 0 0 0 50 

10 140 60 22.5 0 0 0 44 
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11 140 60 22.5 0 0 0 53 

12 140 60 22.5 0 0 0 56 

 

Assume the experimental data satisfies first order model, Y= β0 + β1 X1 + β2 X2 + β3 X3. The X′X 

and (X′X)-1 are   

 XX =























583289.807065.014575.0007.0

07065.05375.831.025.0

14575.031.018.86.0

007.025.06.012

;(XX)-1=



























11655.000104.000212.000002.0

00104.011736.000430.000223.0

00212.000430.012289.000605.0

00002.000223.000605.008368.0

 

Estimated values for parameters are: 0β̂ = 50.520; 
1β̂ = 5.372; 

2β̂ = 10.130; 3β̂ = 1.091 and the estimated 

variance is 104.8626.  The sobol indices for each component in the model at a particular design point are: 

S0 = 0.16345; S1 = 0.37505; S2 = 0.30315; S3 = 0.22764.  Reduce the size of the model by ranking the 

indices.  

Note: It can be noted that there is ambiguity in the method. The elimination of components is changing 

from one design point to another design point. The ratio indices at each design point are evaluated and 

presented in Table 2.3.4. 

Table 2.3.4 

S.No. 
Design Variables Indices corresponding to each 

component in the model 

X1 X2 X3 X1 X2 X3 

1 -0.75 -0.95 -1.133 0.16692 0.255769 0.361287 

2 0.9 -1 -1 0.234601 0.276598 0.274688 

3 -0.95 1.1 -1 0.239871 0.307128 0.252073 

4 1 1 -1 0.294388 0.281141 0.2792 

5 -1.1 -1.05 1.14 0.283681 0.246847 0.288969 

6 1.15 -1 1 0.343139 0.247787 0.246077 

7 -0.9 1 1 0.227658 0.268412 0.266559 

8 1.25 1.15 1 0.375051 0.303158 0.227649 
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9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 0 0 0 0 0 0 

 

2.4  REMARKS ON REDUCTION IN DIMENSIONALITY OF MODELS 

High-dimensional data sets or models make challenges as well as some opportunities bound 

to give rise to new theoretical developments. This can be studied in two aspects: 

(i)  Minimizing the number of factors or factor combinations in the model with minimum loss of 

information in the data and  

(ii) Constructing the designs with minimum number of design points keeping in view the factors that are 

more active. 

Though, several methods on the reduction of dimensionality of the regression model are 

available in the literature, it appears that no significant work has been done to give a proper criterion for 

the selection of variables in the regression model.  No specific exclusive method is used for model 

reduction. The statistical techniques used for model reduction by the researchers are Principal Component 

Analysis, Factor Analysis, Multidimensional Scaling, Stepwise regression, Correlation approach, 

Regression approach, Sobol sensitivity approach, Fourier amplitude and Projection pursuit, Finite element 

methods etc. All these techniques are well known statistical / mathematical methods used to fit 

experimental data model and reduce the model by eliminating insignificant variables based on the 

parameter in the response surface model. 

The feasibility of the Principal Component Analysis, Factor Analysis, Multidimensional 

Scaling, Stepwise regression, Correlation approach, Regression approach are studied for the response 

surface design models and observed that these methods have given fruitful results. Principal Component 

Analysis searches lower dimensional space that computes majority of the variation within the data and 
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discovers linear structure in the data. However, this is ineffective in analyzing nonlinear structures, i.e. 

curves, surfaces or clusters. Hence it is not applicable for response surface model of second and higher 

orders.  Factor Analysis is not applicable for response surface models due to the study of the interaction 

effects in the model and estimation of main effects of individual factors. Correlation approach, Regression 

approach, Sobol sensitivity approach, Fourier amplitude test and Projection pursuit can be used for 

response surface model reduction but Fourier amplitude test and Projection pursuit methods are very time 

consuming and their time complexity is more.  
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3. SELECTION OF VARIABLES IN BAYESIAN APPROACH 

 

3.1 INTRODUCTION 

 

Let A1, A2, … An are ‘n’ mutually exclusive and exhaustive events occurring in the 

sample space S (i.e. S = Ai and Ai  Aj = , ij = 1, 2, …n) and B is any other event occurring 

in the same sample space( i.e B  S), such that P(B) > 0 then the probability of Ai given B, 

denoted by P[Ai/B] is  





n

1i

ii

ii
i

] /A[BP]A [P

] /A[BP]A [P
B]/ [AP    i = 1, 2, … n       (3.1.1) 

It states that if A and B are events, B represents our observation and P(B) > 0. The event 

A represents a model that might be true event. The P(A), is our initial belief about the probability 

of A being true, prior estimate of probability,. The P(B/A) is the probability of event B occurring 

if A is true, called likelihood factor. The P(A/B) is the probability of A being true given that B 

has been observed, posterior estimate. That is finally, consider the range of possible A’s in B to 

be estimated based on the observed B, Since B did happen, the total probability of B happening 

for any A, divide with P(B) to normalize the answer. 

P(A/B) = P(A) P(B/A) /  P(B) 

Let Y = [ Y1 Y2 … Yn ] be the observed sample drawn from a population whose density 

is f (Y, θ) where the parameter θ is unknown and follows a probability distribution f(θ). The joint 

density function of observed sample Y for the given parameter θ, called the ‘likelihood function’ 

of Y denoted by f (Y/θ) and the probability distribution for the parameter  encapsulates the prior 

beliefs held about their most likely values called ‘Prior distribution’ of θ denoted by  f (θ). Then 
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an updated measure of our beliefs for each of the parameter values θ based on our prior beliefs 

and given knowledge of the data Y called the ‘Posterior distribution’ of θ given Y denoted by      

f (/Y) is   




dθ ) θ / (Y)θ (

θ) / (Y)θ (
/Y)(θ

ff

ff
 f    (3.1.2) 

It can be expressed as  

P( Parameter / data ) =   [ P( data / parameter ) * P( parameter )]  / P(data)  

i.e.  Posterior distribution is equal to Likelihood * Prior / Constant 

Bayesian probability of any event is the ratio between the value at which an expectation 

depending on the happening of the event ought to be computed and the chance of the thing 

expected upon it’s happening It demonstrates the estimation of future occurrences of an event, 

given information of the history of the event. It also allows us to obtain useful information even 

from a single piece of evidence or all evidence to be taken into account in an explicit way and 

combined in the overall probability model or included via the prior belief. The prior must be 

defined for every parameter to strengthen in this approach.  

The Bayesian approach allows us to examine the probability that a possible model is true 

and also to compare the different possible models by assessing their relative probabilities of 

being true based on the given data. Obtaining appropriate statistical inferential statements from 

the posterior distribution is the process of fitting a Probabilistic model to an observed data and 

summarizing the result by a Probability distribution on the parameters of the model and on 

observed quantities such as predictions for future unobserved data. 
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 If the Prior probability distribution f () and the Posterior distribution f (/Y) belong to 

same family then the distributions are said to be ‘Conjugate Pair of distributions’. Few of the 

conjugate family of distributions are presented in Table 3.1.1. 

Table: 3.1.1 Conjugate Family of Distributions 

S.No. Likelihood Distribution  Prior Distribution  Posterior Distribution 

1 Bernoulli (p) Beta (a, b) Beta First Kind (a +Yi , b+n-Yi)  

2 Binomial (k, p) Beta First  kind (a, b) Beta First Kind (a +Yi, b+nk-Yi) 

3 Binomial (k, p) Uniform (0,1) Beta First Kind (a +Yi, b+nk-Yi) 

4 Poisson () Gamma (a, b) Gamma (a +xi, b+n)  

5 Negative Binomial (p, r) Beta ( , ) Beta First Kind (a -xi,  b+ r n ) 

6 Geometric ( p) Beta (, ) Beta (′= +n   ; ′= +xi) 

7 Hyper-geometric (N,M,n) Beta-binomial n=N, Beta (a +xi,  b+n-xi)    

8 Multinomial (p1, .., .pk)  Dirichlet (a) Dirchlet(′) where ′= a +xi 

9 Normal (μ , σ0
2) Normal (μ , σ2) Normal (μ′ , σ′2) 

10 Normal (μ0 , σ
2) Gamma (a, b) Gamma (a′, b′) 

 

A Bayesian analysis provides direct statements about the quantities of interest, providing 

more intuitive results and feeding naturally into a decision making process. Bayesian statistics 

allows us to obtain some useful information even from a single piece of evidence, whereas many 

more samples would be required for a frequentist statistical result. The Bayesian approach allows 

all evidence to be taken into account in an explicit way. Different forms of evidence can be 

combined in the overall probability model or included via the prior belief. Analyzing the data 

using different priors allows the data to be interpreted from different points of view, such as 

regulatory or business. 

http://en.wikipedia.org/wiki/Binomial_distribution
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Geometric_distribution
http://en.wikipedia.org/wiki/Hypergeometric_distribution
http://en.wikipedia.org/wiki/Beta-binomial_distribution
http://en.wikipedia.org/wiki/Multinomial_distribution
http://en.wikipedia.org/wiki/Dirichlet_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Inverse_gamma_distribution
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The Bayesian framework more naturally allows for the modeling of biases or systematic error, 

and for modeling any hierarchical structure in the data or in the problem. Bayesian statistics 

provides greater flexibility. It offers a natural way to adapt an experiment in progress in the light 

of results collected so far, or to halt the experiment early if the result is clearer than expected and 

no more data is needed to achieve the desired degree of certainty. 

 

3.2 BAYESIAN ESTIMATION OF PARAMETERS 

 

Let Y = (Y1, Y2 , …,  Yn) be the observed random sample drawn from a population with 

density function f(x,) or P(Y, θ) where the parameter  is unknown and the distribution of the 

parameter θ is f () or P(θ). Evaluate the likelihood function P(Y / ), the joint density of Y and θ 

is defined as P(Y, θ) = P(θ) P(Y/θ).  Estimate the value of the parameter , based on the observed 

sample, then the distribution of parameter  is f () or P() (Prior probability). Evaluate the 

likelihood function with the estimated parameter f (Y/  ). Evaluate the conditional distribution 

of the parameter based on the sample using Bayesian rule as f (θ/Y) = [ f (θ). f (Y/θ)] / [ f (Y)], 

called Posterior distribution of parameter, with the evaluation of Normalized constant  f (y) =       

 f (). f (Y /) d. or P(Y) = ∫ P(θ) P(Y/θ) dθ.  

Identify the full probability model of all observable and unobservable quantities, which 

involves defining the likelihood and prior density functions to be used in estimation. Then 

evaluate the conditional density of the variables to be estimated given the observed data 

(posterior) empirically. Evaluate the implication of the posterior and check the accuracy of the 

estimated quantities. The diagrammatically representation of the process is presented in Fig 

3.2.1. 
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Fig 3.2.1 

 

3.2.1 Metropolis Hastings Algorithm: Bayesian Statistics does not depend on Markov chains.  

The Metropolis Hasting algorithm is a Markov chain Monte Carlo method used to generate a 

sequence of random samples from a probability distribution for which direct sampling is 

difficult. This sequence can be used to approximate the distribution or to compute an expected 

value (integral). It generates a sequence of sample values in such a way that, as more and more 

sample values are produced, the distribution of values more closely approximates the desired 

distribution. These sample values are produced iteratively, with the distribution of the next 

sample being dependent only on the current sample value. At each iteration the algorithm picks a 

candidate for the next sample value based on the current sample value. Then with some 

probability, the candidate is either accepted or rejected the probability of acceptance is 

determined by comparing the likelihoods of the current or candidate sample values with respect 

to the desired distribution. It is making the computations in Bayesian Statistics easier. It is used 

Observed Sample 

(Likelihood Function) 

External Information 

(Prior Function) 

Posterior 

Density 

Risk 

Function 

Bayesian 

Estimate  
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to generate data from the posterior without needing to know some of the parts that are harder to 

find. 

Generate a time reversible Markov chain whose stationary probabilities are Pj = bj /B; for 

(j = l, 2,. . .), where bj ( j = 1, 2, . . .) be positive numbers and B is sum of the positive numbers 

chosen, which is finite.  Define a Markov chain {Xn, n ≥0} as, when Xn = i, generate a random 

variable Y such that P[Y = j] = qij, ( j = 1, 2, ... ).  Let Q = (( qij)) be any specified irreducible 

Markov transition probability matrix on the integers.  If Y = j, then set Xn+1 = j with probability 

αij, and Y = i with probability 1– αij.  Under these conditions, the sequence of states constitutes a 

Markov chain with transition probabilities Pij are given by Pij = qijαij, if j i and  

Pij = qii + qik ( l – αik)  if j=i.  This Markov chain will be time reversible and have stationary 

probabilities Pj Pj = bj/B, if Pi Pij = Pj Pji; for j i which is equivalent to Pi qij αij = Pj qji αji; If      

αji = 1 then, αij = qji Pj / qij Pi and if αij = 1 then αji = qij Pi / qji Pj.  From the above two we have  

αij = min{ qjiPj / qijPi , 1} and αij = min{ bjqji / biqij, 1 } which shows that the value of B is not 

needed to define the Markov chain, because the values bj suffice. The implementation of the 

algorithm is presented below. 

Step-1: Specify the target distribution from which the samples to be generated P() (Prior 

distribution) which is the stationary distribution of Markov chain.  

Step-2: Select an initial point * at random from the proposed distribution q(*/t-1) 

Step-3: Calculate = Min {1, [P(*)/P()] . [ q(t-1/*) / q(*/t-1)] } 

Step-4: Generate a uniform random number u ~ U[0,1]. 

Step-5: Examine whether u  . If u   then define t =* 

Step-6: Repeat steps 2 to 5 until it generates a sequence {1, 2, ... n} 
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3.2.2 Gibbs Sampling: Gibbs sampling is a particular form of Markov chain Monte Carlo 

(MCMC) algorithm for approximating the joint and marginal distribution by sampling from 

conditional distributions. If the joint distribution is not known explicitly or is difficult to sample 

from directly, but the conditional distribution is known or easy to sample from. Even if the joint 

distribution is known, the computational burden needed to calculate it may be huge. Gibbs 

Sampling algorithm could generate a sequence of samples from conditional individual 

distributions, which constitutes a Markov chain, to approximate the joint distribution. It can 

sample from conditional distribution while other parameters are fixed.  

Let us assume that the posterior distribution is P(β) where β = (β1, β2, … βp)  vector of 

parameters. The full conditional distributions Pi(βi) = P(βi /β-i); i = 1, 2, … , p are available i.e., 

these are completely known and can be sampled from  P(β),  where β-i = (β1, … βi-1, βi+1, … βp).   

Step 1:  Set the initial values for the vector of parameters  as β(0) = (β1
(0) 

, β2
(0)

 , … , βp
(0) )  

Step 2: Obtain the updated estimated values for the vector of parameters  as β(j) where β(j) =(β1
(j)

, 

β2
(j) ,  …. ,  βp

(j)) based on the distributions 

  β1
(j) ~ P ( β1 / β2

(j-1) 
, β3

(j-1) ,  …. , p
(j-1) ) ;  

 β2
(j) ~ P ( β2 / β1

(j-1)
, β3

(j-1)
 ,  …  , p

(j-1) ) ,   

… … ... … 

  βp
(j) ~ P ( βd / β1

(j)
 , β2

(j), … , p-1
(j) ) 

Step 3: Change the state j to j+1 and return to step 2. The process is continues until convergence  

is obtained. When convergence is obtained the values β(j) correspond to                             

P (β1, β2, …. βp/ y ). 
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Note: To evaluate the posterior distribution, some of the software’s can be used are Win BUG, 

Open BUG, R-BRIGGS, etc. or can also be evaluated using R-programming based on the prior 

and likelihoods.  

 

3.3 BAYESIAN SELECTION OF VARIABLES  

 

 Several authors made attempts on the optimal choice of the model using Bayesian 

approaches. Some of them are: Mitchell and Beauchamp (1988), George and McCulloch (1993), 

Carlin and Siddhartha Chib (1995), Chipman (1996), Dellaportas et. al. (1997), George and 

McCulloch (1997), Chipman, et. al (1997), Kuo and Mallick (1998), George and Foster (2000), 

Wang and George (2004), Park and Casella (2008), O’Hara and Sillanppa (2009), Lindsey 

Charles and Sheather Simon (2010), Chen and Wang (2010), Weinwurm Stephan, et. al (2013), 

Otava Martin, et. al (2014), Elangovan and Lokeshmaran (2014), and Xu and Ghosh (2015).  

 Mitchell and Beauchamp (1988) proposed a Bayesian variable selection method for 

selecting the best subset of predictor variables in a linear regression model for the prediction of a 

dependent variable by introducing “spike and slab” prior distributions for the regression 

coefficients in linear regression models.  

 George and McCulloch (1993) developed the Stochastic Search Variable Selection 

(SSVS) procedure via Gibbs sampler for selecting or identifying the most promising subsets of 

predictor variables for the entire regression setup in a hierarchical Bayes normal mixture model 

with real data examples. 
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 Carlin and Siddhartha Chib (1995) adopted a framework for Bayesian model choice, 

along with an MCMC algorithm called Gibbs sampling and applied this algorithm to two data 

examples.   

 Chipman (1996) developed the standard independent priors which are used in any 

variable selection procedures.  These priors are incorporated in Bayesian variable selection 

algorithm for any type of linear model.  This application is illustrated through Stochastic Search 

Variable Selection algorithm.  

Dellaportas et. al. (1997) developed Gibbs Variable selection for selecting the 

independent variables for the linear regression model.  George and Mc Culloch (1997) described 

a variety of approaches to Bayesian Variable Selection for hierarchical mixture models. The 

priors in these models describe the uncertainty present in variable selection.  Chipman, Hamada 

and WU (1997) made an attempt on the selection of variables in complex aliasing using 

Bayesian approach and illustrated with four examples, three of which come from actual 

industrial experiments.  

 Kuo and Mallick (1998) made an attempt for selecting the suitable predictors in multiple 

regression using Bayesian approach.  George and Foster (2000) proposed and developed two 

empirical Bayes selection criteria Maximum Marginal Likelihood (MML) and Conditional 

Marginal Likelihood (CML) and showed that these criteria select the maximum posterior models 

under implicit hyper-parameter choices for a particular hierarchical Bayes formulation when 

compared with AIC and BIC.  

 Wang and George (2004) developed and evaluated a new selection criteria based on 

Empirical Bayes and fully Bayes for Generalized Linear Models.  They also introduced a general 

hierarchical mixture Bayesian setup for the variable selection problem.  
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  Park and Casella (2008) developed a fully Bayesian hierarchical model and an efficient 

Gibbs sampler for the lasso problem. 

 O’Hara and Sillanppa (2009) had given review on different Bayesian variable selection 

methods like Kuo and Mallick, Gibbs Variable Selection (GVS), Stochastic Search Variable 

Selection (SSVS), Adaptive Shrikage with Jeffrey’s prior or Laplacian prior and Reversible 

Jump MCMC with real and simulated data examples using BUGS package. 

 Lindsey Charles and Sheather Simon (2010) presented a new Stata program called v-

select that performs variable selection after fitting a linear regression. Also they demonstrated the 

use of each method of variable selection: Forward Selection and Backward Elimination and best 

subset selection with variety of datasets.  Chen and Wang (2010) proposed an application of 

MCMC method to the Bayesian variable selection problem for Gaussian process regression 

model and is applied to the chemometric calibration of near infrared (NIR) spectroscopic data. 

Weinwurm Stephan et. al. (2013) conducted a detailed comparison on Bayesian 

Penalized Regression methods: Bayesian Lasso (BLA), Bayesian Ridge Regression (BRR) with 

Stochastic Search Variable Selection (SSVS) and hybrid Correlation Based Search (hCBS) on 

three simulated datasets.  Each method has capability to predict phenotypes based on the selected 

Single-Nucleotide Polymorphisms (SNPs) and their computational demands are studied. 

 Otava Martin et. al. (2014) focused on Bayesian Variable Selection (BVS) models for 

order-restricted one-way ANOVA models for dose-response data that offers a framework to 

establish a inference and estimation simultaneously.  BVS is similar to Gibbs variable selection.  

Elangovan and Lokeshmaran (2014) discussed the Bayesian variable selection for Cox’s 

regression model and showed that this method works effectively by taking a real data example. 
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 Xu and Ghosh (2015) proposed a Bayesian group lasso model with spike and slab priors 

by selecting the variables both at the group level and within a group also. 

 

3.4 METHODS FOR THE SELECTION OF VARIABLES IN BAYESIAN APPROACH 

 

 In this section, an attempt is made to present some methods used to reduce the 

size of the model by selecting the significant variables for a multiple linear regression model 

using Bayesian approach. 

 

3.4.1 Stochastic Search Variable Selection Method:  It was proposed by George and 

McCulloch (1993), to reduce the size of the model by selecting the significant variables in the 

model by introducing a latent indicator vector that indicates predictors are included in and 

excluded from the current model.   

 Let us consider j = γj θj ; where γj represents the indicator variable, that implies 

P(γj,θj) = P(θj / γj) P(γj). Here Mixture prior for θ is used: P(θj / γj) = (1-γj) N(0, σ2) + γj N(0, cσ 2). 

It proceeds by using Gibbs sampling to sample from the set of possible subset choices.  From 

these subsets with higher probability can be identified by their more frequent appearance in the 

Gibbs sample.   

Note: Unlike in Gibbs Variable Selection values of the prior parameters when γj=0 influence the 

posterior. In this, P(θj/ γj=0) needs to be very small but at the same time not too restricted around 

zero.  The advantage of Stochastic Search Variable Selection is that it avoids the overwhelming 

problem of calculating the posterior probabilities of all 2M subsets. 
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EXAMPLE 3.4.1: Consider the experimental data presented in the example 2.3.1. Consider the 

model to be fitted is Y = β0 + β1X1 + β2X2 + β3X3.  The estimated values for the parameters are: 

0β̂  = 50.520; 
1β̂ = 5.372; 

2β̂ = 10.130; 3β̂ = 1.091.  The variance-covariance matrix (XX) and its 

inverse (XX)-1) are: 























583289.807065.014575.0007.0

07065.05375.831.025.0

14575.031.018.86.0

007.025.06.012

;    



























11655.000104.000212.000002.0

00104.011736.000430.000223.0

00212.000430.012289.000605.0

00002.000223.000605.008368.0

 

Corresponding to each regression parameter the posterior Mean, Posterior Standard 

deviation and its probabilities (%) are presented in the Table 3.4.1. 

Table 3.4.1 

S.No. 
Regression  

Parameters 

Posterior  

Mean 

Posterior 

 S.D 

Posterior 

 Probabilities (%) 

1 β0 50.5197 1.0283 100 

2 β1 5.3846 1.2460 100 

3 β2 10.1232 1.2177 100 

4 β3 0.3685 0.8782 33.8 

 

Hence the reduced model with two variables is: Y = 50.520 + 5.391 X1 + 10.12 X2 with 

R2 value 0.910 selected with highest posterior probability value 0.662. 

 

3.4.2 GIBBS Variable Selection Method:  It was proposed by Dellaportas et. al. (1997).  

Consider j  = γj θj ; where γj represents the indicator variable, that implies  P(γj,θj) = P(θj / γj) 

P(γj).  Since prior distributions of Indicator and effects are assumed to be dependent on each 

other.  In GVS, we consider pseudo – prior for γj=0 otherwise it will be same as Kuo and 
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Mallick.  Here Mixture prior is assumed for θj is P(θj / γj) = (1-γj) N( ̂ , σ2) + γj N(0, τ2) When γj 

= 0 if P(θj / γj =1) is large then the corresponding variable of θj is included in the model. 

EXAMPLE 3.4.2:  Consider the experimental data presented in the example 2.3.1.  The 

estimated parameters are: 0β̂  = 50.520; 
1β̂ = 5.372; 

2β̂ = 10.130; 3β̂ = 1.091.  Corresponding to 

X1 and X2 variables the model attains high posterior probability by considering the pseudo prior 

for indicator variable.  We observe that this method also gives same as method 3.4.1. 

 

3.4.3 Kuo and Mallick Variable Selection Method:  Kuo and Mallick (1998) made an attempt 

to reduce the size of the regression model using indicator variables and conclude that if the 

estimated parameter has high posterior probability then the corresponding variable is included in 

the model. Let j  = γj θj ; where γj represents the indicator variable, that implies P(γj,θj) = P(γj) 

P(θj ).  Since effects and Indicator variables are independent.  In particular, If γj=0 then θj is 

sampled from the full conditional distribution which is taken as its prior.  By taking this prior 

distribution, if θj has high posterior distribution then the corresponding variable of θj is included 

in the model. 

EXAMPLE 3.4.3:  Consider the experimental data presented in the example 2.3.1.  The 

estimated parameters are: 0β̂ = 50.520; 
1β̂ = 5.372; 

2β̂ = 10.130; 3β̂ = 1.091.  In this method, we 

define the full conditional distribution which is taken as prior distribution.  This method can also 

be observed that resulting to same model with high posterior probability value 0.662 containing 

the variables X1 and X2 variables with same R2 value. 
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3.5  WINBUG SOFTWARE USED FOR POSTERIOR EVALUATION 

 

   Win BUG and Open BUG are general-purpose software used for analyzing complex 

statistical Bayesian models using Markov Chain Monte Carlo (MCMC) methods.  It uses the 

Gibbs sampling algorithm to construct the transition kernel for its Markov chain samplers.  Each 

iteration of Gibbs sampler involves drawing a new value for each parameter from its full 

conditional distribution.  This software is used to generate a posterior sample and to estimate the 

parameters of posterior distributions by evaluating the Normalized constant.  To evaluate the 

same programming code is written by specifying observed sample, the distribution of observed 

sample and its estimated parameters based on the sample, prior distribution and its estimated 

values from the observed sample.  
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4.  REDUCTION IN DIMENSIONALITY OF RESPONSE SURFACE 

DESIGN MODEL USING VARIANCE COMPONENT INDICES 

 

 

4.1  INTRODUCTION  

 

Variance component indices are the global sensitivity indices. These indices can be evaluated by 

decomposing variance based on the input-output relationship between the response and input variables. 

From the model, this index measures the contribution of individual components variance to the variance 

of the output variable. In this chapter an attempt is made to derive the variance component indices and the 

proportion of the variances of estimated parameters and the response in case of first order and second 

order response surface design model are presented with suitable examples.   

 

4.2   VARIANCE COMPONENT INDICES FOR FIRST ORDER RSD MODEL  

 

 

The variance component indices for first order response surface design model under without 

imposing restrictions on X′X and imposing restrictions on X′X towards orthogonality are presented in 

sections 4.2.1 and 4.2.2 respectively 

 

4.2.1 Without imposing restrictions on Moment matrix: Consider the following first order 

response surface design model in v factors  

Y = 0 + 1X1+ 2X2  +  …. ….  + vXv + ε    (4.2.1) 

with xu = (1, xu1, xu2 … xuv ) be the uth row of X and β = ( β0, β1, β2… βv ) be the vector of 

parameters. The estimated response at uth design point is  

uvvu22u110u xβ̂........xβ̂xβ̂β̂Ŷ      (4.2.2) 
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 The variance-covariance matrix of ̂  is  

V( ̂ ) = (XX)-1 2       (4.2.3) 

where, the X'X  matrix is   

  









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





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N

1u

uv

N

1u

uvu1

N

1u

2

u1

N

1u

u1

N

1u

uv

N

1u

u1

x...xxx

............

xx...xx

x...xN

 XX'

              (4.2.4)  

 The variance of the predicted response at the uth  point is 

)β̂,β̂Cov(xx)β̂V(x)β̂V()ŶV( jiuj

v

1i

v

1j

uii

v

1i

2

ui0u 
 

    (4.2.5) 

Then the variance component indices Si
’ s corresponding to each of the component are  

S0 = V( 0β̂ ) / V(Ŷu) 

Si = [ xui
2.V(

iβ̂ ) ] / V(Ŷu)       (4.2.6) 

Sij = [ xui xuj
 Cov(

iβ̂ , jβ̂ ) ] / V(Ŷu) 

Note:  

1. The variance component indices can be expressed as product of function of the level of the factor 

and ratio index, where the ratio index is the variance ratio of the parameter to the estimated 

response. 

2. The indices are depends on the design point chosen and its factor level which is different from 

one design point to another. So the insignificance of component is depends on the design point 

chosen. 
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3. Even though the variance component indices in (4.2.6) satisfy S0 + 


v

1i

iS + 


v

1j

ij

v

1i

S  = 1 the 

indices are not theoretically in compressed form due to 


N

1u

uix , uj

N

1u

uixx


 are theoretically not in 

compressed form.   

4. Even though not imposing restrictions on X'X, But it is possible to evaluate the variance 

component indices for numerical experimental data.  

5. If the variance ratio index of parameter and estimated response at uth point is insignificant and 

also insignificant when it is multiplied with function of the factor level(s) then the dimensionality 

of the model can be reduced at those design points only.  

It can be illustrated through the example 4.2.1. 

EXAMPLE 4.2.1: Let 120, 136, 137, 140, 141, 143, 161,  170, 213, 215, 269, 271, 313, 345, 381, 394, 

398, 402 are the responses obtained through a first order response surface design model with four factors 

at the respective design points (0,1,-1,0), (1,-1,-1,1), (1,1,-1,1), (-1,1,-1,-1), (-1,-1,1,1,), (-1,-1,-1,1), 

(0,1,0,-1), (1,-1,-1,-1), (-1,1,-1,1), (-1,1,1,-1), (-1,-1,1,-1), (-1,-1,-1,-1), (1,1,0,0), (1,1,1,-1),(-1,1,-1,-1),(1,-

1,0,-1),(-1,0,-1,-1), (-1,1,-1,1). There are no restrictions that are imposed the design matrix. Then the 

estimated values for parameters are 0β̂ =328.3; 
1β̂ =  -7.365; 

2β̂ =2.97; 3β̂ =2.57; and
4β̂ = -51.07 and the 

variance of estimated response is 11202.61. The variances of the parameters, variance of the estimated 

response at a design point (xu1, xu2, …, xuv) and corresponding variance component indices in the model 

(3.2.1) at design point (xu1, xu2, …, xuv) can be evaluated using (4.2.5) and (4.2.6), which are depends on 

design point chosen.                      

4.2.2 With imposing restrictions on Moment matrix: Consider the model (5.2.1) to be fitted is first 

order response surface design model in v factors. Suppose the restrictions are imposed on X'X given in 

(3.4) towards reaching to orthogonality, as  xui =  xuixuj = 0  and let   x2
ui = Nλ2 (the summation over 

u=1, …N and i ≠ j = 1,2… v).  Then, the variance – covariance matrix X'X can be obtained as 
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X'X   =     








INλ0

0N

2

                                    (4.2.7) 

The variance of the estimated response at the uth design point is  

V (Ŷu)  =  V( β̂ 0)  +  


v

1i

2

uix V( β̂ i)    (4.2.8) 

Where,    V ( β̂ 0) = σ2/N;        V ( β̂ i) = σ2/ N2     for i=1,2, ... v. 

Then, the variance component indices using the model (4.2.8) can be obtained using the equations 

)ŶV(

)β̂V(
S

u

0

0    and 
)ŶV(

)β̂V(
S

u

i
i   xui

2  as 

S0   = N-1   and  Si  = (N2)-1 xui
2  for i = 1, 2,  ... , v.          (4.2.9) 

Note:  

1. The variance component indices are in compressed form and satisfying S0 + 


v

1i

iS  = 1. 

2. The variance ratio index of parameter, estimated response at uth point are same for all the factors.  

3. Even though the indices are in compressed form, depends on the factor level(s) which is different 

from one design point to another. So the insignificance of component is depends on the design 

point chosen. 

It is illustrated in the example 4.2.2. 

 

EXAMPLE 4.2.2: Let 27.6, 16.6, 15.4, 17.4, 17.0, 19.0, 17.4, 12.6, 18.6, 22.4, 21.4, 14.0, 24.0, 15.6, 

13.0, 14.4 are the responses obtained through a first order response surface design model with four factors 

at the respective design points  (1, 1, 1, 1), (-1, -1, 1, 1), (1, -1, -1, 1),  (-1, 1, -1, 1), (1,-1,1,-1), (-1,1,1,-1), 

(1,1,-1,-1),  (-1,-1,-1,-1), (1,-1,1,1), (-1,1,1,1), (1,1,-1,1), (-1, -1, -1, 1), (1, 1, 1, -1), (-1, -1, 1, -1), (1, -1, -

1, -1), (-1, 1, -1, -1). In this design, xui = xuixuj=0  and let  x2
ui = Nλ2. The estimated values of 

parameters are 0̂ = 17.9, 1̂ = 64, 2̂ = 2.55, 3̂ = 2.2 and 4̂ = 1.275. The variance of the response is 



50 | P a g e  
 

17.30. The variances of the parameters, variance of the estimated response at a design point (xu1, xu2, …, 

xuv) and corresponding variance component indices in the model (4.2.2) at design point (xu1, xu2, …, xuv) 

can be evaluated using (4.2.5) and (4.2.6), which are depends on design point chosen.  

 

EXAMPLE 4.2.3:  Consider the experimental data presented in the example 2.3.5. The estimated 

parameters are: 0β̂  = 50.520; 
1β̂ = 5.372; 

2β̂ = 10.130; 3β̂ = 1.091.  Then the sobol indices are: S0 = 

0.16345; S1 = 0.37505; S2 = 0.30315; S3 = 0.22764.  We observe that each index gives same as method 

2.3.5.   

Note:  

1. The reduction of size of the model depends on the design points. 

2. It is difficult to reduce the size of the model if the design is orthogonal in case of first order model 

and rotatable in case of second order model.  

 

4.3   VARIANCE COMPONENT INDICES FOR SECOND ORDER RSD MODEL 

 

 The variance component indices for second order response surface design model under 

without imposing restrictions on X′X and imposing restrictions on X′X towards orthogonality are 

presented in sections 4.3.1 and 4.3.2 respectively.  

4.3.1 Without imposing restrictions on Moment matrix: Consider the second-order response 

surface design model in v factors at the uth design point as 

Yu = 0 + 


v

i 1

i xui + 


v

i 1

ii xui
2 + 



v

ji

ij xui
 xuj + ε         (4.3.1) 

 Let Xu = (1, xu1, xu2 … xuv, x
2
u1, x

2
u2 … x2

uv, xulxu2 … xuv-1xuv) is the uth row of X,  

        β = ( β0, β1, β2… βv, β11, β22 … β vv, βl2 … βv-1v )' is the vector of parameters. 
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Then estimated response at the uth design point is  

Ŷu = β̂ 0 + 


v

i 1

β̂ i xui + 


v

i 1

β̂ ii xui
2 + 



v

ji

β̂ ij xui
 xuj   (4.3.2) 

The variance-covariance matrix of β̂  is  V( β̂ ) = (XX)-1 2 , where XX is  
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(4.3.3) 

The V(Ŷu) is not in a simplified form as the elements in moment matrix are in higher 

order. Then the estimated response at uth design point is YX'X)X(X'ˆ 1u and variance 

covariance matrix of u̂ is V ( u̂ ) = (XX)-1 σ2 not in compressed form.  Let S0 Si, Sii and Sij are 

the variance-component indices of the model (4.3.2)  

 

S0   = V( β̂ 0) / V (Ŷu);  

Si =  [xui
2.V( β̂ i)]  / V (Ŷu)               (4.3.4) 
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Sii =  [xui
4.V( β̂ ii)]  / V (Ŷu)         

Sij  = [xui
2 xuj

2 Cov( β̂ i, β̂ j)] / V (Ŷu) 

Note:  

1. The variance components indices can be expressed in (4.3.4) are product of function of the level 

of the factor and ratio index, where the ratio index is the variance ratio of the parameter to the 

estimated response. 

2. The variance component indices are depends on the design point chosen and its factor level which 

is different from one design point to another. So the insignificance of component is depends on 

the design point chosen. 

3. Even though the variance component indices in (4.3.2) satisfy S0 + 


v

1i

iS  + 


v

1i

iiS  + 


v

1j

ij

v

i

S  

= 1 the indices are not theoretically in compressed form due to XX is not in compressed form 

depends on design points.   

4. Even though not imposing restrictions on X'X, But it is possible to evaluate the variance 

component indices for numerical experimental data.  

5. If the variance ratio index of parameter and estimated response at uth point is insignificant and 

also insignificant when it is multiplied with function of the factor level(s) then the dimensionality 

of the model can be reduced at those design points only.  

It can be illustrated through the example 4.3.1. 

 

EXAMPLE 4.3.1: Let 2.83, 3.25, 3.56, 2.53, 3.01, 3.19, 2.23, 2.65, 3.06, 2.57, 3.08, 3.50, 2.42, 2.79, 

3.03, 2.07, 2.85, 3.12 are the responses obtained through a second order response surface model with 

three factors at the design points (-1, -1, -1), (0, -1, -1), (1,-1, -1), (-1, 0, -1), (0, 0, 1), (1, 0, 1), (-1, 1, 1), 

(0, 1, 1), (1, -1, 0), (-1, -1, 0), (0, -1, -1), (1, 0, -1), (-1, 0, 1), (0, 0, -1), (1, 1, 0), (-1, 1, 1), (-1, 1, 1), (-1, 1, 

-1). Then estimated values of the parameters are 0β̂ =51.74, 1β̂ =0.44, 2β̂ = -0.209, 3β̂ = -0.038; 
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023.0β̂11  , 539.0β̂ 22  , 840.0β̂33  , 170.0β̂12  , 066.0β̂13   and 513.0β̂23  . The variance 

of the estimated response is 0.165. The variances of the parameters, variance of the estimated response at 

a design point (xu1, xu2, …, xuv) and corresponding variance component indices in the model (4.3.2) at 

design point (xu1, xu2, …, xuv) can be evaluated using (4.3.3) and (4.3.4), which are depends on design 

point chosen. These are used for ranking the parameters
iβ s, to reduce the model.      

4.3.2. With imposing restrictions on Moment matrix: Consider the second-order response 

surface design model in v factors at the uth design point given in (4.3.1). Suppose the restrictions 

are imposed on the moment matrix X'X towards reaching to orthogonality for second order 

model, as xui
i xuj

j xuk
k xul 

l = 0;  i≠ j ≠ k ≠ l = 1, 2, … v  for any value is odd  and  x2
ui = N 

λ2 ;  x4
ui = CN λ4 ;  x2

ui x
2

uj = Nλ4 where the summation is over all the design points, and let Δ 

= λ4(C+v-2)-vλ2
2 > 0. Then the moment matrix X'X and (X'X)-1 can be obtained as  
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where   =  4 (c+k–1) – k 2
2  > 0  and Zkxk = kk ,2
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variances of the estimated parameters can be obtained as,  

V ( ̂ 0)  =  [ 4 (c+k–1)/ N]2    

V ( β̂ i)  = (1/ N2)2 ;   

V ( β̂ ij ) = (1/ N4)  2 

Cov ( β̂ 0 , β̂ jj )  =  [ -2  / N] 2    
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V ( β̂ ii )  = [ {4(c+k–2)–(k–1)2
2 } / {N4 (c–1) } ] 2         

Cov ( β̂ ii , β̂ jj )  = [ ( 2
2 – 4) / {(c–1) N4 } ] 2   

and other covariance’s are vanishes. 
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2.  Then variance of estimated response is  
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The resulting variance of estimated response from the above equations is  
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The variance-component indices consider thus interaction among the input variables.  
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origin. 

3. Even though the variance-component indices are in compressed form, depends on the factor 

level(s) which is different from one design point to another (design points are hided in the 

indices). So the insignificance of component is depends on the design point chosen.  
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EXAMPLE 4.3.2: Let 63.03, 62.19, 64.01, 61.60, 58.95, 78.34, 45.75, 72.66, 46.36, 68.62, 35.16, 59.24, 

71.62, 84.01, 61.18, 77.78, 61.15, 74.83, 52.45, 65.72 are the responses obtained through a second order 

response surface design model with four factors  at the respective design points :( 0, 0, 0,0), ( 0, 0, 0,0) ( 

0, 0, 0,0) ( 0, 0, 0,0), (-1,-1,-1,-1), (1,-1,-1,-1), (-1, 1,-1,-1), (1,1,-1,-1), (-1,-1,1,-1), (1,-1,1,-1), (-1, 1, 1, -

1), (1,1,1,-1), (-1,-1,-1,1), (1,-1,-1,1), (-1,1,-1,1), ((1,1,-1,1), ((-1,-1,1,1), (1,-1,1,1), (-1,1,1,1), (1,1,1,1). 

The estimated values of the parameters are 0β̂ = 62.70, 
1β̂ = 9.28, 

2β̂ = -4.62, 3β̂ = -5.22; 4β̂ = -

5.22, 
22β̂ = -94.13, 33β̂ = -94.13, 44β̂ = 27.6, 12β̂ =0.821, 13β̂ = -0.12, 

14β̂ = -2.294, 
11β̂ = 161.22, 23β̂ = -

0.17, 24β̂ = 0.311, and 34β̂ = 0.367. The variance of the estimated response is 144.33.  The variances of 

the parameters, variance of the estimated response at a design point (xu1, xu2, …, xuv) and corresponding 

variance component indices in the model (4.3.1) at design point (xu1, xu2, …, xuv) can be evaluated, which 

are depends on design point chosen. These are used for ranking the parameters iβ ’s to reduce the model.       
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4.4  COMPARISON IN DIMENSIONALITY OF REDUCED MODELS 

 

Consider the first order response surface design model with the experimental data given by a 

chemical engineer to investigate the yield of a process on temperature, pressure and catalyst concentration 

and made an attempt to reduce the size of the model with different approaches proposed by Homma and 

Saltelli (1996) and in section 4.2.  A comparison among the methods with respect to Coefficient of 

Regression parameters, Confidence Interval, Significance value, R2 value and Sum of squares due to 

residual (Se
2) for the data presented in example 2.3.5 is presented in Table 2.4.1 and found that all the 

methods gives same reduced models when comparing with the full model. 

 

Table 2.4.1 

Parameters 

Confidence 

Interval 

 

Significance 

Value 

Full 

Model 

Homma and 

Saltelli (1996) 

Proposed in  

Section 4.2  
Lower  Upper 

 48.130 52.908 48.761 50.52 50.52 50.52 

 2.476 8.267 4.278 5.372 5.372 5.372 

 7.300 12.959 8.256 10.13 10.13 10.13 

 -1.729 3.910 0.892 1.091 - - 

SSE 102.621 102.621 102.621 

R2 0.918 0.918 0.918 
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5.  REDUCTION IN DIMENSIONALITY OF 

RESPONSE SURFACE DESIGN MODEL IN NESTED APPROACH 

 

5.1 INTRODUCTION  

Let YNX1 be the vector of response corresponding to a design matrix X = ((xu1, xu2, …, 

xuv)), where xui be the level of the ith factor in the uth treatment combination, u = 1, 2, … N,    i = 

1, 2, … p. The functional form of the response surface design model can be expressed as  

Y = Xβ + ε     (5.1.1) 

where YN1 = (Y1, Y2,  … , YN)' is the vector of observations, X Np be the Design matrix, β p1 be 

the vector of parameters and ε N1 = (ε1, ε2, ... εN)' be the vector of random errors and assume that  

ε ~ N(0,σ 2I).  The factor-response relationship is given by E(Y) = f (x1, x2, …, xv) is called the 

‘Response Surface’. Design used for fitting the response surface models are termed as ‘Response 

Surface Design’. The least square estimate of the parameter is β̂ = (X'X)-1X'Y and its variance–

covariance is V ( β̂ ) = (X'X)-1σ2.  

 

Multi-collinearity is a phenomenon in which two or more predictor variables in 

a multiple regression model are highly correlated, meaning that one can be linearly predicted 

from the others with a non-trivial degree of accuracy.  It refers to a situation in which two or 

more explanatory variables in a multiple regression model are highly linearly related.  

 

 

 

https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Multiple_regression
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Multiple_regression
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5.2. REDUCTION OF FIRST ORDER RSD MODEL IN NESTED APPROACH 

Consider the linear functional relationship between the response and ‘v’ factors. 

Yu = β0 + β1xu1 + β2xu2 +   …   …   … + βvxuv + εu   (5.2.1) 

where,  

Yu  be the uth response at the design point Xu,  

xu = (1, xu1, xu2, … xuv) be the uth
  treatment combination of ‘v’ factors,  

β   = [β0, β1, β2, … βv]′ be the vector of parameters and  

εu be the random error corresponding to uth response Yu .  Assume ε ~ N (0, σ 2I). 

When the number of predictor variables is more, each variable affects the estimates and 

useful to predict the response in the model. To avoid or alleviate the problem of multi-

collinearity, fitting process will play a key role. From the choice of k independent variables, one 

variable that best fits the objective vector is selected; select the variables sequentially one by one 

from the original set which have most significant correlation with the estimated error and how 

much contribution of variable is in the estimate of response and stops the procedure until 

remained variables in the variable set are not significant for the objective vector. An attempt is 

made to fit a response surface design model in nested approach.  

The detailed step by step procedure is presented below. 

Step 1: Let (Y1, Y2, … , YN)′ be the vector of N observations, and  XNxv be the design matrix,  

F1, F2, … , Fv  are v factors. Assume initially Y= ε1. 

Step 2: Choose the maximum correlation coefficient factor as Fi (= X1) with Y and assume the 

nested model as Y = β01 + β1X1  + ε2.   

Step 3: Evaluate the estimated responses and residuals (εi+1 = εi - ̂ for i = 1, 2, .. .v-1).  



60 | P a g e  
 

Step 4: Choose the maximum correlated factor as Fj ( =Xi+1 ) in the ith step, between the residual 

and unselected factors, and assume the nested model as εi+1= β0i+1 + βi+1Xi+1 + εi+2.  

Step 5: Estimate the nested model as 
1iε̂ 
 =

10iβ̂ 
+ 1iβ̂  Xi+1. Test the significance of the model. 

Step 6: Repeat the steps 3-5, if the model is significant and the resulting model is the best model 

with the selected factors can be expressed in the form ̂ = 0β̂ +


k

m 1

mβ̂ Xm where 0β̂ = 

0k0201 β̂...β̂β̂   and k  v.  

The flow chart of the method is presented in fig 5.2.1.  
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         Fig 5.2.1: Nested procedure for First Order RSD Model 

Compute the Correlation between 

error term ε and each factor Fi 

Select Maximum Correlation Factor 

ρY,Xi = Max Corr{ ε, Fi} 

Construct a model with the selected 

factor Xi as   iεXββε ii0i1i   

 

Fit the model & evaluate estimated 

residual  ii0i1i Xβ̂β̂ε̂   

Evaluate the Residual due to the 

model  
ii1i ε̂εε 
 

 

 

Reduced Model is obtained 

Test the 

significance of 

Parameter 

  Start 

Y be the Input vector of Responses. 

Input the Design matrix & FORSD 
 

i  0, Assume ε1 = Y 
 

Stop 
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The method for reduction of first order response surface design model is illustrated in 

case of orthogonal design and non orthogonal design in the examples 5.2.1 and 5.2.2. 

EXAMPLE 5.2.1:  Five factors in a manufacturing process for an integrated circuit were 

investigated in a 25-1 design with the objective of improving the process yield (Y).  The five 

factors were A: Aperture Setting (Small, Large); B: Exposure time (20 percent below nominal, 

20 percent above nominal); C: Develop Time (30 & 45 Sec); D: Mask Dimension (Small, Large) 

and E: Etch Time (14.5 & 15.5 Min).  The construction of the 25-1 design is shown below with 

sixteen design runs. Therefore five factors with coded variables and corresponding response 

values are given below.  

Let Y = [8  9  34  52  16  22  45  60  6  10  30  50  15  21  44  63]′ be the vector of 

responses obtained at sixteen design runs [ (-1 -1 -1 1 1), (1 -1 -1 1 -1), (-1 1 -1 1 -1), (1 1 -1 1 

1), (-1 -1 1 1 -1), (1 -1 1 1 1), (-1 1 1 1 1), (1 1 1 1 -1), (-1 -1 -1 -1 -1), (1 -1 -1 -1 1), (-1 1   -1 -1 

1), (1 1 -1 -1 -1), (-1 -1 1 -1 1), (1 -1 1 -1 -1), (-1 1 1 -1 -1), (1 1 1 -1 1) ]′ respectively.  

The correlation between response variable and the factors are: r (Y, X1) = 0.293,         r 

(Y, X2) = 0.891, r (Y, X3) = 0.286, r (Y, X4) = 0.023, r (Y, X5) =   0.016. The estimated model 

with maximum correlated factor is 1 = 30.313 + 16.937 X2 + ε2.  Evaluate ε2 corresponding to 

each X2. Mean square due to model (MSR) is 4590.063 and Mean square Error (MSE) is 84.670 

and R2 = 0.795; the factor X2 is Significant. 

The correlations between residual term and factors are: r (ε2, X1) =  0.646,  r (ε2, X3) =  

0.632, r ( ε2, X4) =  0.051, r ( ε2, X5) =  0.036. X1 is selected with maximum correlation and the 

new model is ε2 = 0.000 + 5.562 X1 + ε3.  MSR=495.063, MSE=49.308; R2 =0.418; the factor X1 

is Significant.  
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The correlation between residual variable and unselected variables are:                        r ( 

ε3, X3) =  0.828, r ( ε3, X4) =  0.067, r ( ε3, X5) =  0.048.  X3 is selected with maximum 

correlation and the new model is ε3= - 0.001+ 5.437 X3+ ε4.  MSR=473.062, MSE =15.518; R2 

=0.685; the factor X3 is Significant. Repeat the steps until no significant factor is selected. The 

correlation between residual variable and unselected variables are:  r ( ε4, X4) =  0.119,    r ( ε4, 

X5) =  0.085; where ε4 = 3- ̂   ε4=  0.00 + 0.437 X4 + ε5.  MSR=3.062, MSE =15.299; R2 

=0.014; X4 is Insignificant. 

 The nested reduced model is Y = 30.312 + 16.937 X2 + 5.562 X1 + 5.437 X3, with error 

sum of squares 217.250 with 12 degrees of freedom and with an R2 value is 0.962. 

EXAMPLE 5.2.2: Taguchi (1987) studied PVC insulation of electric wire experiment conducted 

in 27 runs with nine factors. Among the nine factors, two are about Plasticizer: DOA (X1) and 

DOP (X2); two about stabilizer: Tribase (X3) and Dyphos (X4); three about Filler: Clay (X5), 

Titanium white (X6), and Carbon (X7); the remaining two about process condition: number of 

revolutions of screw (X8) and cylinder temperature (X9). All nine factors are continuous and their 

levels are chosen to be equally spaced.  The measure is the embrittlement temperature (Y).  The 

response vector of 27 runs are:  

Let Y = [ 5  2  8  -15  -6  -10  -28  -19  -23  -13  -17  -7  -23  -31  -23 -34  -37  -29  -27  -27     -30  

-35  -35  -38  -39  -40  -41 ] corresponding at the design points [ (0 0 0 0 0 0 0 0 0),          (0  0 0 0 

1 1 1 1 1),  (0 0 0 0 2 2 2 2 2), (0 1 1 1 0 0 0 2 2), (0 1 1 1 1 1 1 0 0),  (0 1 1 1 2 2 2 1 1),     (0 2 2 

2 0 0 0 1 1), (0 2 2 2 1 1 1 2 2), (0 2 2 2 2 2 2 0 0), (1 0 1 2 0 1 2 0 1), (1 0 1 2 1 2 0 1 2), (1 0 1 2 

2 0 1 2 0), (1 1 2 0 0 1 2 2 0), (1 1 2 0 1 1 2 0 0 1), (1 1 1 2 0 2 0 1 1 2), (1 2 0 1 0 1 2 1 2), (1 2 0 

1 1 2 0 2 0), (1 2 0 1 2 0 1 0 1), (2 0 2 1 0 2 1 0 2), (2 0 2 1 1 0 2 1 0), (2 0 2 1 2 1 0 2 1), (2 1 0 2 
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0 2 1 2 1), (2 1 0 2 1 0 2 0 2), (2 1 0 2 2 1 0 1 0), (2 2 1 0 0 2 1 1 0), (2 2 1 0 1 0 2 2 1), (2 2 1 0 2 

1 0 0 2) ]′ respectively.  

The correlation between response variable and the factors are: r(Y, X1) = -0.762,                    

r(Y, X2) = -0.601, r(Y, X3) = -0.124, r(Y, X4) = -0.108, r(Y, X5) =  0.052,  r(Y, X6) = -0.039, r(Y, 

X7) =  0.114, r(Y, X8) =  0.007, r(Y, X9) = 0.026.  The estimated model with maximum 

correlated factor is ε1 = - 8.830 + -13.343X1 + ε2. Evaluate ε2 corresponding to each X1. Mean 

square due to model is (MSR) is 3019.919 and Mean Square Error is 87.283 and R2 = 0.581; the 

factor X1 is Significant. 

The correlation between residual term and factors are: r(ε2, X2) = -0.861, r(ε2, X3) =    -

0.124, r(ε2, X4) = -0.099, r(ε2, X5) = 0.148, r(ε2, X6) = 0.007, r(ε2, X7) = 0.244,                               

r(ε2, X8) = -0.057, r(ε2, X9) = -0.108.  X2 is selected with maximum correlation and the new 

model is ε2= 9.481 - 9.481X2 + ε3.  MSR = 1617.990, MSE = 22.564; R2 = 0.741; the factor X2 is 

Significant. 

The correlation between residual variable and unselected variables  are: r (ε3, X3) =      -

0.245,    r(ε3, X4) = -0.195, r(ε3, X5) =  0.291, r (ε3, X6) = 0.013, r(ε3, X7) = 0.480,   r(ε3, X8) =  -

0.113,  r(ε3,X9) =  -0.212.  X7 is selected with maximum correlation and the new model is             

ε3= - 2.685 + 2.686X7 + ε4.  MSR = 129.836, MSE = 17.370; R2 = 0.230; the factor X7 is 

Significant.  Repeat the steps until no significant factor is selected. 

The correlation between residual variable and unselected variables are:                          

r(ε4, X3) =  -0.279, r(ε4, X4) =  -0.222, r(ε4, X5) = 0.332, r(ε4, X6) =  0.015, r(ε4, X8) = - 0.128, 

r(ε4, X9) = - 0.241,where ε4 = 3 - ̂ ; ε4= - 1.631 + 1.630 X5 + ε5.  MSR = 47.834,                       

MSE = 15.457; R2 = 0.110; X5 is insignificant.  
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The resulting nested reduced model is Y = - 2.034 - 13.343 X1 - 9.481 X2 +2.686 X7, with 

error sum of squares 431.513 with 23 degrees of freedom and with an R2 value is 0.917.   

5.3  REDUCTION OF SECOND ORDER RSD MODEL IN NESTED APPROACH 

Consider the functional relationship between the response and factors be defined as  

  Yu = 0 +


v

i 1

i xui +


v

i 1

ii xui
2 +



v

ji

ij xui
 xuj + ε u  (5.3.1) 

Where Yu be the uth response at the design point Xu for u=1,2,..N,  

       Xu = (1, xu1, xu2 … xuv, x
2

u1, x
2
u2 … x2

uv, xulxu2 ,…, xuv-1xuv)  be the uth
  treatment 

combination,  

      β = (β0, β1, β2… βv, β11, β22 … β vv, βl2 … βv-1v)’ be the vector of parameters  

       εu be the random error corresponding to the response Yu . Assume ε ~ N (0, σ 2I). 

METHOD: Let Y = 0 +


v

i 1

i xui +


v

i 1

ii xui
2 +



v

ji

ij xui
 xuj + ε be the full model with ‘v’ 

factors.  Evaluate the correlation between the residual variables with factors and arrange them in 

decreasing order. Assume r1 < r2 < … < rvv-1 where ri= Corr (i, Xi), rii= Corr (i, Xi
2),       rij= 

Corr (ij, XiXj) for i, j=1, 2, 3, …, v., ij. Let Y = 1 and ε1 = β01 + β1X1  + ε2,   ε2 = β02 + β2X2 +ε3, 

ε3 =  β03 +β3X3 + ε4,   …  εv = β0v + βvXv + εv+1,  …  ,   εvv-1 = β0vv-1 + βvv-1Xv-1Xv + εvv. Select the 

maximum correlated factor as X1 with response variable and estimate the parameters as ̂  = 

01β̂ + 1β̂ X1.  Then evaluate the residuals and select the maximum correlated variable with the 

residual term and estimate the nested model as rε̂  = 0rβ̂ + rβ̂ Xr .for all possible values of r = 2, 3, 

…v, 11, 22, … vv, 12, 13, .. v(v-1).  (denote Xij = XiXj ).  Examine the significance of the model 

to include in the nested model.  Repeat the procedure until no more factors will be included in 

the model.  The resulting model will be the best choice of selected factors in the model ̂ = 
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ijβ̂ XiXj where 0β̂ =
0k0201 β̂...β̂β̂   and k  2v+vC2.  

The Nested Approach is presented diagrammatically in fig 5.3.2. 
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       Fig 5.3.2: Nested procedure for Second Order RSD Model 

 

 

The method for reduction of second order response surface design model in case of 

without restrictions and restrictions towards rotatability on moment matrix are illustrated in the 

examples 5.3.1 and 5.3.2 are presented below. 

EXAMPLE 5.3.1:  Khuri and Cornel (1996) studied the 24 factorial experimental design of the 

hydrogenolysis of Canadian lignite using carbon-monoxide and hydrogen mixtures as reducing 

agents, the input variables studied were X1 = Temperature; X2 = CO (H2 ratio); X3 = Pressure; 

and X4 = Contact time.  One of the response variables under investigation was Y = Percentage 

lignite conversion.  The levels of four factors are with, X1: Reaction temperature: 380oC, 460oC; 

X2: Initial CO / H2 ratio (molar ratio) is ¼: ¾ ; X3: Initial Pressure (MPa) 7.10, 11.10;  X4:  

Contact time at reaction temperature (min) 10, 50.  

Let Y = [ 53.3  78  62.4  78.9   75.9  75.4   71.3   84.4  64.5  67.5  72.8  85.3  71.4   83.3   

82.9  81.7 ]′ be the vector of responses obtained at the sixteen design points [ (-1 -1 -1  -1), (1 -1 

-1 -1), (-1 1 -1 -1), (1 1 -1 -1), (-1 -1 1 -1), (1 -1 1 -1), (-1 1 1 -1), (1 1 1 -1), (-1 -1   -1 1), (1 -1 -1 

1), (-1 1 -1 1), (1 1 -1 1), (-1 -1 1 1), (1 -1 1 1), (-1 1 1 1), (1 1 1 1)]′ respectively.  

The correlation between response variable and the factors are: r (Y,X1) =  0.574, r  (Y,X2) 

= 0.361, r (Y,X3) = 0.456, r (Y,X4) = 0.214, r (Y,X1X2) = 0.013, r (Y,X1X3) =  - 0.239, r (Y, 

X1X4) =  -0.198, r (Y, X2X3) = -0.156, r (Y, X2X4) =  0.155, r (Y, X3X4) = - 0.037.  The 

estimated model with maximum correlated factor is ε1 = 74.313 + 5.0 X1 + ε2.  Evaluate ε2 

corresponding to each X1. Mean square due to model (MSR) is 400 and Mean square Error 

(MSE) is 58.278 and R2=0.329; the factor X1 is Significant. 
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The correlation between residual term and factors are:  r (ε2, X2) = 0.441, r (ε2, X3) = 0.557,  r 

(ε2, X4) =   0.261, r (ε2, X1X2) = 0.016 , r (ε2, X1X3) =  - 0.292, r (ε2, X1X4) = - 0.242,  r (ε2, 

X2X3) = - 0.191, r (ε2, X2X4) =  0.189, r (ε2, X3X4) =  - 0.046.  X3 is selected with maximum 

correlation and the new model is ε2 = - 0.001 + 3.975 X3 + ε3.  MSR = 252.810, MSE=40.221; R2 

=0.310; the factor X3 is Significant.   

The correlation between residual variables and unselected variable are: r (ε3, X2) = 0.531,  r (ε3, 

X4) =  0.314, r (ε3, X1X2) = 0.019, r (ε3, X1X3) = - 0.352, r (ε3, X1X4) = - 0.291,  r (ε3, X2X3) = - 

0.230, r (ε3, X2X4) = 0.228, r (ε3, X3X4) =  - 0.055.  X2 is selected with maximum correlation and 

the new model is ε3 = 0.0000 + 3.15 X2 + ε4.  MSR = 158.760, MSE = 28.881; R2 = 0.282; the 

factor X2 is Significant.  Repeat the steps until no significant factor is selected. 

The correlation between residual variables and unselected variable are: r (ε4,X4) = 0.371, 

r (ε4, X1X2) = 0.022, r (ε4, X1X3) = - 0.415, r (ε4, X1X4) = - 0.343, r (ε4, X2X3) =  - 0.271, r(ε4, 

X2X4) = 0.269, r(ε4, X3X4) = - 0.065; where ε4 = 3- ̂ and   ε4 =  0.001 – 2.087 X1X3 + ε5.  MSR 

= 69.722, MSE = 23.9; R2 =0.172; X1X3 is Insignificant. 

The nested reduced model is Y = 74.312 + 5 X1 + 3.975 X3 + 3.15 X2 , with error sum of 

squares 404.328 with 12 degrees of freedom and with an R2 value is 0.667.   

EXAMPLE 5.3.2:  A chemical Engineer is investigating the yield (Y) of a process.  Three 

process variables are of interest: Temperature (A), Pressure (B), and Catalyst Concentration (C).  

Each variable can be run at a low and a high level, and the engineer decides to run a 23 design 

with four center points.  The design and the resulting yields are shown below.   

Let Y = [32  46  57  65  36  48  57  50  44  53  56]′ be the yield of a process 

corresponding to coded variables X1, X2 & X3 are [(-1 -1 -1), (1 -1 -1), (-1 1 -1), (1 1 -1), (-1  -1 

1), (1 -1 1), (-1 1 1), (0 0 0), (0 0 0), (0 0 0), (0 0 0)]′ respectively. 
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The correlation between response variable and the factors are: r (Y, X1) = 0.328,           

r(Y, X2) =  0.824, r(Y, X3) =  -0.118, r(Y, X1
2) = - 0.106, r(Y, X2

2) = -0.106, r(Y, X3
2) =         - 

0.106, r (Y, X1X2) = - 0.317, r(Y, X1X3) =  - 0.218, r(Y, X2X3) =  - 0.267.  The estimated model 

with maximum correlated factor is ε1 = 50.329 + 9.618 X2 + ε2.  Evaluate ε2 corresponding to 

each X2.  Mean square due to model (MSR) is 639.188 and Mean square Error (MSE) is 33.504 

and R2 = 0.679; the factor X2 is Significant. 

The correlation between residual term and factors are: r (ε2, X1) = 0.809, r (ε2, X3) = 

0.021, r (ε2, X1
2) =  -0.061, r(ε2, X2

2) = - 0.061, r (ε2, X3
2) = -0.061, r (ε2, X1X2) =  -0.330,  r (ε2, 

X1X3) =  - 0.155, r (ε2, X2X3) =   -0.242.  X1 is selected with maximum correlation and the new 

model is ε2 = 0.486 + 5.348 X1 + ε3.  MSR = 197.577, MSE = 11.551; R2 = 0.655; the factor X1 is 

Significant.  Evaluate the correlation between residual variables and unselected variables are: r 

(ε3, X3) = 0.253, r (ε3, X1
2) = 0.016, r (ε3, X2

2) =  0.016, r (ε3, X3
2) = 0.016,      r (ε3, X1X2) = -

0.344, r (ε3, X1X3) = -0.045, r (ε3, X2X3) = - 0.195; where ε3 = 2- ̂ .  ε3 = - 0.121 – 1.334 X1X2 + 

ε4.  MSR=12.301, MSE =10.185; R2 =0.118; X1X2 is insignificant. 

The nested reduced model is Y = 50.815 + 9.618 X2 + 5.348 X1, with error sum of 

squares 98.906 with 8 degrees of freedom and with an R2 value is 0.895.   

EXAMPLE 4.3.3:  Sosada (1993) studied the effects of extraction time (X1), solvent volume 

(X2), ethanol concentration (X3), and temperature (X4) on the yield and phosphatidylcholine 

enrichment (PCE) (Y) of de-oiled rapeseed lecithin when fractionated with ethanol.   

Let Y =   [ 27.6  16.6  15.4  17.4  17.0  19.0  17.4  12.6  18.6  22.4  21.4  14.0  24.0  15.6  

13.0  14.4  22.6  23.4  20.6  22.6  13.4  20.6  15.6  21.0  17.6]′ be the vector of responses 

obtained at 25 design points [ (1 1 1 1), (-1 -1 1 1), (1 -1 -1 1), (-1 1 -1 1), (1 -1 1    -1), (-1 1 1 -

1), (1 1 -1 -1), (-1 -1 -1 -1), (1 -1 1 1), (-1 1 1 1), (1 1 -1 1), (-1 -1 -1 1), (1 1 1     -1), (-1 -1 1 -1), 
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(1 -1 -1 -1), (-1  1  -1  -1), (0  0  0  0), (1.414  0  0  0), (-1.414  0  0  0), (0  1.414  0  0), (0  -1.414  

0  0), (0  0  1.414  0), (0  0  -1.414  0), (0  0  0  1.414), (0  0  0             -1.414) ]′ respectively.  

The correlation between response variable and the factors are: r (Y, X1) = 0.305,         r 

(Y, X2) = 0.623 , r (Y, X3) = 0.489,  r (Y, X4) = 0.292, r (Y, X1
2) = 0.061, r (Y, X2

2) =           -

0.231, r (Y, X3
2) = -0.224, r (Y, X4

2) = -0.136, r (Y, X1X2) = 0.155, r (Y, X1X3) = 0.062,       r (Y, 

X1X4) = 0.036,  r (Y, X2X3) = 0.124, r (Y, X2X4) = 0.098, r (Y, X3X4) = -0.016.  The estimated 

model with maximum correlated factor is ε1 = 18.552 + 2.691X2 + ε2.  Evaluate ε2 corresponding 

to each X2.  Mean square due to the model (MSR) is 144.778 and Mean square Error (MSE) is 

9.932 and R2 = 0.388; the factor X2 is Significant. 

The correlation between residual term and factors are: r (ε2, X1) =  0.390, r (ε2, X3) = 

0.625,  r (ε2, X4) = 0.373, r (ε2, X1
2) = 0.079, r (ε2, X2

2) = - 0.296, r (ε2, X3
2) = - 0.286,              r 

(ε2, X4
2) = - 0.174, r (ε2, X1X2) = 0.198, r (ε2, X1X3) = 0.079, r (ε2, X1X4) = 0.046,                r (ε2, 

X2X3) = 0.159, r (ε2, X2X4) = 0.126, r (ε2, X3X4) = - 0.020. X3 is selected with maximum 

correlation and the new model is ε2 = - 3.553E-017 + 2.114 X3 + ε3.                    MSR = 89.343, 

MSE = 6.048, R2 = 0.391; the factor X3 is Significant. The correlation between residual variables 

and unselected variables are: r (ε3, X1) =  0.500, r (ε3, X4) =  0.478, r (ε3, X1
2) = 0.101, r (ε3, X2

2) 

= - 0.379, r (ε3, X3
2) = - 0.367, r (ε3, X4

2) = - 0.223, r (ε3, X1X2) = 0.254, r (ε3, X1X3) = 0.102, r 

(ε3, X1X4) = 0.059,  r (ε3, X2X3) = 0.203, r (ε3, X2X4) = 0.161, r (ε3, X3X4) = -0.025.  X1 is 

selected with maximum correlation and the new model is ε3 = 0.000 + 1.318 X1+ ε4. MSR = 

34.742, MSE = 4.537; R2 = 0.250; the factor X1 is Significant.  Repeat the steps until no 

significant factor is selected. 

The correlation between residual variable and unselected variables are: r (ε4, X4) =  0.552, 

r (ε4, X1
2) = 0.116, r (ε4, X2

2) = - 0.438, r (ε4, X3
2) = - 0.424, r (ε4, X4

2) = - 0.258, r (ε4, X1X2) = 
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0.294, r (ε4, X1X3) = 0.117, r (ε4, X1X4) = 0.069,   r (ε4, X2X3) = 0.235,  r (ε4, X2X4) = 0.186, r 

(ε4, X3X4) = - 0.029.  ε4= 1.776E-017 + 1.260 X4+ ε5. MSR = 31.773, MSE = 3.156; R2 = 0.304; 

the factor X4 is Significant. The correlation between residual variable and unselected variables 

are: r (ε5, X1
2) = 0.139, r (ε5, X2

2) = - 0.525, r (ε5, X3
2) =       - 0.508, r (ε5, X4

2) = - 0.309, r (ε5, 

X1X2) = 0.352, r (ε5, X1X3) = 0.141, r (ε5, X1X4) = 0.082,     r (ε5, X2X3) = 0.282, r (ε5, X2X4) = 

0.223, r (ε5, X3X4) = -0.035. ε5= 1.264 - 1.580 X2
2

 + ε6. MSR = 19.976, MSE = 2.287; R2 = 

0.275; the factor X2
2 is Significant. 

The correlation between residual variable and unselected variables are: r (ε6, X1
2) = 

0.164, r (ε6, X3
2) = - 0.597, r (ε6, X4

2) = - 0.363, r (ε6, X1X2) = 0.414, r (ε6, X1X3) = 0.165,         r 

(ε6, X1X4) = 0.097,  r (ε6, X2X3) = 0.331, r (ε6, X2X4) = 0.262, r (ε6, X3X4) = - 0.041,            ε6 = 

1.224 - 1.530 X3
2
 + ε7.  MSR = 18.723, MSE = 1.473; R2 = 0.356; X3

2 is Significant. The 

correlation between residual variable and unselected variables are: r (ε7, X1
2) = 0.204,             r 

(ε7, X4
2) = - 0.452, r (ε7, X1X2) = 0.515, r (ε7, X1X3) = 0.206, r (ε7, X1X4) = 0.120,                 r(ε7, 

X2X3) = 0.412, r (ε7, X2X4) = 0.326, r (ε7, X3X4) = - 0.052.   ε7 = 0.000 + 0.750 X1X2 + ε8. MSR 

= 9.000, MSE = 1.082; R2 = 0.266; X1X2 is Significant. The correlation between residual 

variable and unselected variables are: r (ε8, X1
2) = 0.238,   r(ε8, X4

2) = - 0.527, r (ε8, X1X3) = 

0.241, r (ε8, X1X4) = 0.140, r (ε8, X2X3) = 0.481,  r (ε8, X2X4) = 0.381, r (ε8, X3X4) = - 0.060.  ε8 

= 0.744 - 0.930 X4
2

 + ε9.  MSR = 6.912, MSE = 0.781; R2 = 0.278; X4
2 is Significant. 

The correlation between residual variable and unselected variables are: r (ε9, X1
2) = 

0.281, r (ε9, X1X3) = 0.283, r (ε9, X1X4) = 0.165,   r (ε9, X2X3) = 0.566, r (ε9, X2X4) = 0.488,    r 

(ε9, X3X4) = -0.071.  ε9= 0.000 + 0.600 X2X3 + ε10.  MSR = 5.760, MSE = 0.531; R2 = 0.320; 

X2X3 is Significant. The correlation between residual variable and unselected variables are:   r 

(ε10, X1
2) = 0.320, r (ε10, X1X3) = 0.343, r (ε10, X1X4) = 0.200,   r (ε10, X2X4) = 0.544,  r (ε10, 



72 | P a g e  
 

X3X4) = -0.086.  ε11= 0.000 + 0.475 X2X4 + ε12.  MSR = 3.610, MSE = 0.374; R2 = 0.296; X2X4 

is Significant. 

The correlation between residual variable and unselected variables are: r (ε11, X1
2) = 

0.405, r (ε11, X1X3) = 0.409, r (ε11, X1X4) = 0.239, r (ε11, X3X4) = - 0.102.                                            

ε12= 0.000 + 0.3 X1X3 + ε12.  MSR = 1.440, MSE = 0.311; R2 = 0.167; X1X3 is Significant. The 

correlation between residual variable and unselected variables are: r (ε12, X1
2) = 0.444,     r (ε12, 

X1X4) = 0.262,   r (ε12, X3X4) = - 0.112. ε13= - 0.337 + 0.421 X1
2

 + ε14. MSR = 1.415, MSE = 

0.250; R2 = 0.197; X1
2 is Significant.  

The correlation between residual variable and unselected variables are: r (ε13, X1X4) = 

0.292, r (ε13, X3X4) = -0.125. ε14= 2.513e-005 + 0.175 X1X4+ ε15.  MSR = 0.490, MSE = 0.229; 

R2 = 0.085; X1X4 is insignificant. 

 The resulting nested reduced model is Y= 21.447 + 2.691 X2 + 2.114 X3 + 1.318 X1 + 

1.260 X4 – 1.580 X2
2 – 1.530 X3

2 + 0.750 X1X2 – 0.930 X4
2 + 0.6 X2X3 + 0.475 X2X4 + 0.3 X1X3 

+ 0.421 X1
2 with error sum of squares 5.479 with 12 degrees of freedom and with an R2 value 

0.985.   

5.4 COMPARISON OF NESTED MODEL WITH CLASSICAL MODELS AND THEIR 

ANALYSIS 

An attempt is made to analyze the reduced First order (examples 5.2.1, 5.2.2) and Second 

Order (examples 5.3.1, 5.3.2 and 5.3.3) Response Surface Design Models in Nested approach are 

presented.  The comparison in respect of (a) the estimated values for the parameters and the 

selection of best models using Step-wise approach, Forward approach and Backward elimination 

approach (b) the estimated values for the parameters and confidence interval at 95% level for the 

parameters and (c) the sum of squares due to reduced model and its R2 are evaluated. 
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5.4.1 FIRST ORDER RSD MODEL  

a) The estimated values for parameters in case of full model and reduced models in different 

approaches is presented in Table 5.4.1 

 

Table 5.4.1: Example 5.2.1 

 S.No. Parameters Full Model Stepwise Forward Backward Nested 

  30.313 30.313 30.313 30.313 30.313 

  5.563 5.563 5.563 5.563 5.563 

  16.937 16.937 16.937 16.937 16.937 

  5.437 5.437 5.437 5.437 5.437 

  0.438 - - - - 

  0.312 - - - - 

 

b) The estimated values for the parameters and their Confidence Intervals at 95% level 

corresponding to the data presented in example 5.2.1 (orthogonal design) of First Order 

Response Surface Model are presented in the table 5.4.2. 

Table 5.4.2: Example 5.2.1 

S.No. Parameters Full model 
95% Credible Intervals  

Significance 

Value Lower Upper 

  30.313 27.744 32.881 26.295 

  5.563 2.994 8.131 4.825 

  16.937 14.369 19.506 14.693 

  5.437 2.869 8.006 4.717 

  0.438 -2.131 3.006 0.380 

  0.312 -2.256 2.881 0.271 

 

c) Comparison of S.S & R2 of full model with reduced models is presented in table 5.4.3 
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Table 5.4.3: Example 5.2.1 

  
Full model Stepwise Forward Backward Nested 

SSR 5562.813 5558.19 5558.19 5558.19 5558.188 

ESS 212.625 217.25 217.25 217.25 217.25 

MSE 21.262 18.104 18.104 18.104 18.104 

R2 value 0.963 0.962 0.962 0.962 0.962 

Note: It can be noted that the values of parameters β4, β5 are insignificant in nested and other 

regression approaches. So in all the approaches the reduced model is same and the mean square 

due to residual and R2 values are same.   

5.4.2 FIRST ORDER RSD MODEL IN EXAMPLE 5.2.2 

a) The estimated values for parameters in case of full model and reduced models in different 

approaches are presented in Table 5.4.4. 

Table 5.4.4: Table 4.4.1: Example 5.2.2 

 S.No. Parameters Full Model Stepwise Forward Backward Nested 

  0.256 -2.408 -2.408 -2.408 -2.034 

  -12.996 -12.94 -12.94 -12.94 -13.343 

  -9.5 -9.503 -9.503 -9.503 -9.481 

  -1.389 - - - - 

  -1.111 - - - - 

  1.611 - - - - 

  0.055 - - - - 

  2.666 2.663 2.663 2.663 2.686 

  -0.611 - - - - 

  -1.166 - - - - 

b) The estimated values for the parameters and their Confidence Intervals at 95% level 

corresponding to the data presented in example 5.2.2 (non-orthogonal design) of First 

Order Response Surface Model are presented in the Table 5.4.5. 
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Table 5.4.5: Table 5.4.1: Example 5.2.2 

S.No. Parameters Full model 
95% Credible Intervals  

Significance 

Value Lower Upper 

  0.256 -6.110 6.621 0.085 

  -12.996 -15.164 -10.827 -12.644 

  -9.5 -11.581 -7.419 -9.633 

  -1.389 -3.470 0.692 -1.409 

  -1.111 -3.192 0.969 -1.127 

  1.611 -0.470 3.691 1.633 

  0.055 -2.024 2.136 0.056 

  2.666 0.586 4.747 2.704 

  -0.611 -2.692 1.470 -0.619 

  -1.166 -3.247 0.914 -1.183 

 

c) Comparison of S.S & R2 of full model with reduced models is presented in table 5.4.6.  

Table 5.4.6: Example 5.2.2 

 
Full model Stepwise Forward Backward Nested 

SSR 4905.37 4770.49 4770.49 4770.49 4770.49 

ESS 296.629 431.513 431.513 431.513 431.513 

MSE 17.449 18.761 18.761 18.761 18.761 

R2 value 0.943 0.917 0.917 0.917 0.917 

 

Note: It can be noted that the values of parameters β3, β4, β5, β6, β8, β9 are insignificant in nested 

and other regression approaches. So, in all the approaches the reduced model is same and the 

mean square due to residual and R2 values are same.   
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5.4.3 SECOND ORDER RSD MODEL IN EXAMPLE 5.3.1   

a) The estimated values for parameters in case of full model and reduced models in  

 different approaches is presented in Table 5.4.7 

Table 5.4.7: Example 5.3.1 

S.No. Parameters Full Model Stepwise Forward Backward Nested 

1  74.313 74.313 74.313 74.313 74.313 

2  5.000 5 5 5 5 

3  3.15 - - 3.15 3.15 

4  3.975 3.975 3.975 3.975 3.975 

5  1.862 - - - - 

6  0.113 - - - - 

7  -2.088 - - - - 

8  -1.725 - - - - 

9  -1.363 - - - - 

10  1.35 - - - - 

11  -0.325 - - - - 

 

b) The estimated values for the parameters and their Confidence Intervals at 95% level are 

presented in example 5.3.1 (orthogonal design) of Second Order Response Surface 

Design Model are presented in the table 5.4.8.  

 

 

Table 5.4.8: Example 5.3.1 

S.No. Parameters Full model 
95% Credible Intervals  

Significance 

Value Lower Upper 

1  74.313 70.557 78.068 50.868 

2  5.000 1.245 8.755 3.423 
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Table 5.4.8: Example 5.3.1 

S.No. Parameters Full model 
95% Credible Intervals  

Significance 

Value Lower Upper 

3  3.15 -0.605 6.905 2.156 

4  3.975 0.220 7.730 2.721 

5  1.862 -1.893 5.618 1.275 

6  0.113 -3.643 3.868 0.077 

7  -2.088 -5.83 1.668 -1.429 

8  -1.725 -5.480 2.030 -1.81 

9  -1.363 -5.118 2.393 -0.933 

10  1.35 -2.405 5.105 0.924 

11  -0.325 -4.080 3.430 -0.222 

 

c) Comparison of S.S & R2 of full model with reduced models is presented in table 5.4.9                 

Table 5.4.9: Example 5.3.1 

 
Full model Stepwise Forward Backward Nested 

SSR 1045.16 652.81 652.81 811.57 811.57 

ESS 170.738 563.088 563.088 404.328 404.328 

MSE 34.148 43.314 43.314 33.694 33.694 

R2 value 0.860 0.537 0.537 0.667 0.667 

 

Note:  It can be noted that the values of parameters β4, β11, β22, β33, β44, β12, β13, β14, β23, β24, β34 

are insignificant in nested and backward approaches whereas in stepwise and forward β2, β4, β11, 

β22, β33, β44, β12, β13, β14, β23, β24, β34 are insignificant. Hence the corresponding reduced model, 

Mean square error due to residual and R2 values are same. 

 

 



78 | P a g e  
 

5.4.4 SECOND ORDER RSD MODEL IN EXAMPLE 5.3.2:   

a) The estimated values for parameters in case of full model and reduced models in  

 different approaches is presented in table 5.4.10 

Table 5.4.10: Example 5.3.2 

S.No. Parameters Full Model Stepwise Forward Backward Nested 

1  50.75 50.906 50.906 50.906 50.815 

2  5 5.484 5.484 5.484 5.348 

3  10 10.484 10.484 10.484 9.618 

4  0.5 - - - - 

5  -0.25 - - - - 

6  -1.5 - - - - 

7  -0.5 - - - - 

8  -1 - - - - 

 

b) The estimated values for the parameters and their Confidence Intervals at 95% level 

corresponding to the data presented in example 5.3.2 (non-orthogonal design) of Second 

Order Response Surface Model are presented in the table 5.4.11 

Table 5.4.11: Example 5.3.2 

S.No. Parameters Full model 
95% Credible Intervals  

Significance 

Value Lower Upper 

1  50.75 42.597 58.902 19.811 

2  5 -3.152 13.152 1.952 

3  10 1.847 18.152 3.904 

4  0.5 -7.652 8.652 0.195 

5  -0.25 -11.779 11.279 -0.069 

6  -1.5 -9.652 6.652 -0.586 

7  -0.5 -8.652 7.652 -0.195 
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8  -1 -9.152 7.152 -0.390 

 

 

c) Comparison of S.S & R2 of full model with reduced models is presented in table 5.4.12  

 

Table 5.4.12: Example 5.3.2 

 
Full model Stepwise Forward Backward Nested 

SSR 861.977 841.821 841.821 841.821 841.821 

ESS 78.75 98.906 98.906 98.906 98.906 

MSE 26.25 12.363 12.363 12.363 12.363 

R2 value 0.916 0.895 0.895 0.895 0.895 

 

Note:  It can be noted that the values of parameters β3, β11, β22, β33, β12, β13, β23 are insignificant 

in nested and other regression approaches. So in all the approaches the reduced model is same 

and the mean square error due to residual and R2 values are same. 

5.4.5 SECOND ORDER RSD MODEL IN EXAMPLE 5.3.3 

a) The estimated values for parameters in case of full model and reduced models in different 

approaches is presented in table 5.4.13 

Table 5.4.13: Example 5.3.3 

 S.No. Parameters Full Model Stepwise Forward Backward Nested 

1  21.447 21.783 21.783 21.783 21.447 

2  1.318 1.318 1.318 1.318 1.318 

3  2.691 2.691 2.691 2.691 2.691 

4  2.114 2.114 2.114 2.114 2.114 

5  1.26 1.26 1.26 1.26 1.26 

6  0.421 - - - 0.421 

7  -1.58 -1.58 -1.58 -1.58 -1.58 

8  -1.53 -1.53 -1.53 -1.53 -1.53 
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9  -0.93 -0.93 -0.93 -0.93 -0.93 

10  0.75 0.75 0.75 0.75 0.75 

11  0.3 - - - 0.3 

12   0.175 - - - - 

13   0.6 0.6 0.6 0.6 0.6 

14  0.475 0.475 0.475 0.475 0.475 

15  -0.075 - - - - 

                  

b) The estimated values for the parameters and their Confidence Intervals at 95% level 

corresponding to the data presented in the example 5.3.3 (central composite design) of 

Second Order Response Surface Model are presented in the table 5.4.14. 

Table 5.4.14: Example 5.3.3 

S.No. Parameters Full model 
95% Credible Intervals  

Significance 

Value Lower Upper 

1  21.447 20.486 22.408 49.725 

2  1.318 0.960 1.676 8.197 

3  2.691 2.332 3.049 16.732 

4  2.114 1.755 2.472 13.144 

5  1.26 0.902 1.619 7.839 

6  0.421 -0.146 0.988 1.655 

7  -1.58 -2.147 -1.013 -6.213 

8  -1.53 -2.097 -0.963 -6.016 

9  -0.93 -1.496 -0.363 -3.656 

10  0.75 0.349 1.151 4.172 

11  0.3 -0.101 0.701 1.669 

12   0.175 -0.226 0.576 0.973 

13   0.6 0.199 1.001 3.337 

14  0.475 0.074 0.876 2.642 

15  -0.075 -0.476 0.326 -0.417 
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c) Comparison of S.S & R2 of full model with reduced models is presented in table 5.4.15   

Table 5.4.15: Example 5.3.3 

 
Full model Stepwise Forward Backward Nested 

SSR 368.053 364.618 364.618 364.618 367.473 

ESS 5.169 8.604 8.604 8.604 5.749 

MSE 0.517 0.615 0.615 0.615 0.479 

R2 value 0.986 0.977 0.977 0.977 0.985 

 

Note:  It can be noted that the values of parameters β14, β34 are insignificant in nested approach. 

Whereas β11, β13, β14, β34 are insignificant in all other approaches.  

 

5.5   REMARKS ON NESTED SELECTION OF MODEL 

1. The nested approach avoids the problem of multi-collinearity by selecting single variable 

at each step.  

2. It reduces the size of the original model by selecting a subset of variables from the 

original set of variables iteratively in a forward approach. 

3. If the number of factors are more one can be linearly predicted from the others with a 

non-trivial degree of accuracy. 

4. The time complexity of Nested selection of model is same as that of classical standard 

procedures in estimation and testing the parameters significance in each step of iteration. 

5. The selection of variables in the model is almost same when compared with all classical 

approaches in addition to that it selects some more variables in some cases which was 

observed when testing number of models. 

6. The maximum number of iterations depends on the number of components in the model.  
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6. REDUCTION IN DIMENSIONALITY OF RESPONSE 

SURFACE DESIGN MODEL USING BAYESIANAPPROACH 

 

6.1  INTRODUCTION 

Let Y = [Y1 Y2 … Yn ] be the observed sample drawn from a population with parameter 

. The joint density function of observed sample Y for the given parameter θ, called the 

likelihood function of Y denoted by P(Y/θ). Probability distribution for each parameter 

encapsulates the prior beliefs held about their most likely values called Prior distribution. P(θ) 

explains the information about the parameter θ called prior distribution of θ. An updated measure 

for each of the parameter values θ based on prior and given knowledge on Y called the posterior 

distribution of θ given Y.  Bayesian approach is a powerful technique can be used to estimate the 

uncertainties of parameters based on the posterior probabilities. Posteriors can be computed 

using the likelihood and prior distributions, since the marginal likelihood is simply a normalized 

constant, which need not be explicitly calculated. The prior must be defined for every parameter 

to strengthen the Bayesian approach.  




dθ ) θ / (Y)θ (

θ) / (Y)θ (
/Y)(θ

ff

ff
 f    (6.1.1) 

  Posterior distribution  Prior distribution * Likelihood function 

The posterior probability of  given Y can be evaluated by generating a sequence of 

sample values in such a way that, as more and more sample values as possible, such that the 

distribution of sample values more closely approximates the desired distribution and is used to 

evaluate the normalized constant f (Y) =  f ().f (Y/) d. The computation of normalized 

constant manually is more difficult due to not knowing about all possible samples of population 
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of parameter. To evaluate the normalized constant, we can also use Gibbs sampling technique or 

Metropolis Hasting Algorithm etc.   

6.2  POSTERIOR DISTRIBUTION OF REGRESSION PARAMETER 

Consider a simple linear regression model, Y = β0 + β1X + ε expressed in the form Y = 

Xβ + ε to be fitted for the data based on the observed sample. Let (x1, y1), (x2, y2), … , (xn, yn) be 

a random sample of size ‘n’ drawn from a bi-variate normal population with means x and y 

and variance σx
2 and σy

2. Assume Y ~N (Xβ, σ2) and ε ~ N(0, σ2I). 
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The likelihood function of observed sample (y1, y2, … , yn) is  
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 The posterior distribution of parameters can be evaluated using Bayesian rule as  

P(, σ2
 / y) = P(σ2) . P(y/ , σ2) = 



n

1i

(σ2)-1/2 exp{ (-1/ 2σ2) [ yi- fi (x, ) ]2                    (6.2.4) 

Integrating with respect to σ2 we can obtain 

P()       ∏ ( [ yi- fi (x, ) ]2) –n /2 dβ                                              (6.2.5) 

The parameter β can be estimated using the observed sample vector y and based on the 

prior distribution P(), which follows N(X, σ2/∑Xi
2).  

 

6.3 BAYESIAN SELECTION OF REDUCED FIRST ORDER RESPONSE SURFACE 

DESIGN MODEL  

Let there be ‘v’ factors each at ‘s’ levels for experimentation.  Consider the N treatment 

combinations of ‘v’ factors with different levels to form a design XN×v = ((xui)) u=1, …N, 

i=1,2,…v, where xui be the level of the ith factor in the uth treatment combination. Let us assume 

that there are k independent variables X1, X2,… Xv and one dependent variable y.  If the model is 

of first order, then 

    Yu = β0+ β1xu1+ β2xu2+……..+ βkxuv + εu        (6.3.1) 

It can be expressed in matrix form as 
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Y = X β + ε     (6.3.2) 

Where Y = [Y1,  Y2, ... , YN ] be the observed sample on the random variable Y~ N(Xβ, 2). 
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X =  be the data matrix of size N with ‘v’ predictor variables. Assume X ~ N(x ,x
2). 

β = [ β0  β1   …,  βv ] be the vector of parameters.  

  = [1, 2, … , N] be the vector of random errors. ε ~ MVN (0, σ2IN) ). 

The likelihood function of an observed sample Y with the given parameters β and σ2 is 
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Then, the distribution of the parameters is:  
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Then the posterior distribution of the parameter β is  
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And, the posterior distribution of the parameter σ2 is  
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 Let Y be the response variable follow Normal distribution (say) and let X1, X2, …,  Xv be 

the predictor variables for the selection of best model for the response Y. Let M1, M2, …, Mm be 

the possible models ( m = 2v ) each containing subsets of X1, X2, … Xv. For each j, Model Mj 

(j=1,2, … k) is defined by a family of distributions Pθj  where Pθj has some prior distribution. The 

dimension of Pθj for each j need not be same. The posterior probability for all possible models 

M1, M2,  … Mm can be evaluated based on their priors, likelihood and Normalized constant 
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(unknown). Then, select the best model M* with the highest posterior probability from M1, M2, 

... Mm.  The method is illustrated in case of orthogonal design and non orthogonal designs in the 

examples 6.3.1 and 6.3.2. 

EXAMPLE 6.3.1:  Consider the experimental data considered in the example 5.2.1 with five 

factors in 16 design points. Using R the posteriors for all the 32 possible linear combination 

models are evaluated and the highest posterior probability is presented in Table 6.3.1  

Table 6.3.1 

S.No. Parameters Posterior Mean Posterior S.D. P0 

1 β0 30.313 1.082 1.00 

2 β1 5.562 1.082 1.00 

3 β2 16.937 1.082 1.00 

4 β3 5.437 1.082 1.00 

5 β4 0.095 0.551 0.21 

6 β5 0.065 0.526 0.20 

.  

 Bayesian estimated parameters values are: 0β̂ = 30.31; 
1β̂ = 5.562; 2β̂ = 16.94; 3β̂ = 

5.436; 
4β̂  = 0.4381; 5β̂ = 0.3126. The resulting reduced Bayesian model is Y = 30.313 + 5.562 

X1 + 16.937 X2 + 5.437 X3, with error sum of squares 217.250 with 12 degrees of freedom and 

with an R2 value is 0.962 selected with highest probability value 0.618 with three variables. 

 

EXAMPLE 6.3.2: Consider the experimental data considered in the example 5.2.2 with nine 

factors in 27 design points. Using R the posteriors for all the 512 (m = 29) possible linear 

combination models are evaluated and the highest posterior probability is presented in Table 
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6.3.2. The Bayesian estimated parameters values are: 0β̂  = 0.417; 
1β̂ = - 12.78; 

2β̂ = - 9.329; 3β̂ = 

- 1.219; 
4β̂  = - 0.942;  5β̂  = - 0.323; 6β̂  = 0.225; 7β̂ = 2.835; 8β̂ = - 0.433; 9β̂ = - 0.984. 

Table 6.3.2 

S.No. Parameters Posterior Mean Posterior S.D P0 

1 β0 -1.795 2.610 1.00 

2 β1 -12.955 1.042 1.00 

3 β2 -9.503 1.004 1.00 

4 β3 -0.544 0.917 0.39 

5 β4 -0.301 0.716 0.27 

6 β5 0.796 1.060 0.49 

7 β6 0.006 0.344 0.11 

8 β7 2.542 1.123 0.95 

9 β8 -0.093 

 

0.449 0.15 

10 β9 -0.340 0.754 0.29 

 

The resulting reduced Bayesian model is Y = - 2.408 – 12.940 X1 – 9.503 X2 + 2.663 X7, 

with error sum of squares 431.513 with 23 degrees of freedom and with an R2 value is 0.917 

selected with highest probability value 0.105 with three variables. 

 

6.4 BAYESIAN SELECTION OF REDUCED SECOND ORDER RESPONSE SURFACE 

DESIGN MODEL  

Let there be ‘v’ factors each at‘s’ levels.  Consider the N treatment combinations of ‘v’ 

factors with different levels to form a basic design XN×v = ((xui)) u = 1,…N, i=1,2,…v, where xui 

be the level of the ith factor in the uth treatment combination. Let us assume that there are v 

independent variables X1, X2, …. Xv and one dependent variable Y.  If model is of second order, 

then 
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It can be expressed in matrix form as 
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Y = X β + ε     (6.4.2) 

Where,  

Y = (Y1, Y2,  … , YN)' is the vector of observations, 

ε = (ε1, ε2, ... εN)' is the vector of random errors and assume that  ε ~ N(0,σ 2I). 

Xu = (1, xu1, xu2 … xuv, x
2
u1, x

2
u2 … x2

uv, xulxu2 … xuv-1xuv)  is the uth row of X 

 β= (β0, β1, β2… βv, β11, β22 … β vv, βl2 … βv-1v)' is the vector of parameters. 

Let the total number of terms in the model be k (= 2v + vC2). 

The likelihood function of an observed sample Y with the given parameters β and σ2 is 
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Then, the distribution of the parameters is:  
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Then the posterior distribution of the parameter β is  
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And, the posterior distribution of the parameter σ2 is  
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  where k = 2v + vC2.     (6.4.6) 

The method for reduction of second order response surface design model in case of 

without restrictions and restrictions towards rotatability on moment matrix are illustrated in the 

examples 6.4.1 and 6.4.2 are presented below. 

EXAMPLE 6.4.1:  Consider the experimental data considered in the example 5.3.1 with four 

factors in 16 design points. Using R the posteriors for all the 16,384 possible linear combination 

models are evaluated and the highest posterior probability is presented in Table 5.4.1.  The 

Bayesian estimated parameters values are: 0β̂  = 74.31; 
1β̂ = 5; 

2β̂ = 3.149; 3β̂ = 3.974; 
4β̂  = 1.86;  

12β̂  = 0.112; 13β̂  = -2.089;  14β̂ = -1.725; 23β̂ = - 1.366; 24β̂ = 1.349;   34β̂ = 0.326; 

Table 6.4.1 

S.No. Parameters Posterior Mean Posterior S.D P0 

1  74.313 1.379 1.00 

2  5 1.379 1.00 
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3  3.033 1.469 0.96 

4  3.969 1.386 0.99 

5  1.030 1.360 0.55 

6 11 -0.181 0.746 0.11 

7 22 -0.175 0.738 0.11 

8 33 -0.169 0.729 0.11 

9 44 -0.162 0.722 0.11 

10 12 -0.025 0.550 0.11 

11 13 -1.042 1.505 0.66 

12 14 -0.531 1.283 0.48 

13 23 -0.229 1.007 0.33 

14 24 0.273 0.944 0.32 

15 34 -0.032 0.504 0.12 

 

The resulting reduced Bayesian model is Y = 74.312 + 5 X1 + 3.15 X2 + 3.975 X3 + 

1.862 X4  - 2.088 X13 - 1.725 X14, with error sum of squares 231.493 with 9 degrees of freedom 

and with an R2 value is 0.810 selected with highest probability value 0.025 with six variables. 

EXAMPLE 6.4.2:  Consider the experimental data considered in the example 5.3.2 with three 

factors in 11 design points. Using R the posteriors for all the 512 possible linear combination 

models are evaluated and the highest posterior probability is presented in Table 5.4.2.  The   

Bayesian estimated parameters values are: 0β̂  = 50.71; 
1β̂ = 5.001; 

2β̂ = 10; 3β̂ = 0.499; 
33β̂  = -

0.249;  12β̂  = -1.50; 13β̂  = -0.501; 23β̂ = -0.999;  

Table 6.4.2 

S.No. Parameters Posterior Mean Posterior S.D P 0 

1  50.813 1.589 1.00 

2  5.446 1.519 1.00 

3  10.446 1.519 1.00 
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4  0.346 1.006 0.30 

5 11 0.037 1.032 0.16 

6 22 0.034 1.019 0.16 

7 33 0.031 1.006 0.16 

8 12 -0.413 1.069 0.32 

9 13 -0.011 0.725 0.19 

10 23 -0.159 0.821 0.22 

 

The resulting reduced Bayesian model is Y = 50.906 + 5.484 X1 + 10.484 X2, with error 

sum of squares 98.906 with 8 degrees of freedom and with an R2 value is 0.895 selected with 

highest probability value 0.128 with two variables. 

EXAMPLE 6.4.3:  Consider the experimental data considered in the example 5.3.3 with four 

factors in 25 design points (CCD). Using R the posteriors for all the 16,384 possible linear 

combination models are evaluated and the highest posterior probability is presented in Table 

5.4.3.  The Bayesian estimated parameters values are: 0β̂  = 20.87; 
1β̂ = 1.350; 

2β̂ =2.435, 

3β̂ =2.215, 
4β̂ =1.317, 

11β̂ =0.228, 
22β̂ = -1.64, 33β̂ = -0.893, 

44β̂ = -0.483, 
12β̂ =0.751, 13β̂ =0.299, 

14β̂ =0.174, 23β̂ =0.599, 
24β̂ =0.475, 34β̂ = -0.076. 

 

Table 6.4.3 

S.No. Parameters Posterior Mean Posterior S.D P  0 

1  21.525 0.443 

 

1.00 

2  0.689 0.668 0.52 

3  2.691 0.161 1.00 

4  2.114 0.161 1.00 

5  1.260 0.161 1.00 
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6 11 0.323 0.282 0.76 

7 22 - 1.579 0.255 1.00 

8 33 -1.529 0.255 1.00 

9 44 -0.929 0.255 1.00 

10 12 0.750 0.180 1.00 

11 13 0.232 0.200 0.77 

12 14 0.057 0.131 0.32 

13 23 0.600 0.180 1.00 

14 24 0.475 0.180 1.00 

15 34 -0.012 0.077 0.15 

 

The resulting reduced Bayesian model is Y = 21.446 + 1.318 X1 + 2.691 X2 + 2.114 X3 + 

1.261 X4  + 0.421 X11 - 1.58 X22 - 1.53 X33  - 0.929 X44 + 0.75 X12 + 0.30 X13 + 0.60 X23 + 0.475 

X24,  with error sum of squares 5.749 with 12 degrees of freedom and with an R2 value is 0.985 

selected with highest probability value 0.144 with twelve variables. 

 

 

 

6.5 COMPARISON OF BAYESIAN SELECTION MODEL WITH CLASSICAL 

SELECTION MODELS & THEIR ANALYSIS:  

In this section an attempt is made to compare the reduced First order and Second Order 

Response Surface Design Models in Bayesian approach with Step-wise approach, Forward 

approach, Backward elimination approach and Nested approach and confidence intervals for 

Estimated parameters and the R2 are presented.   
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6.5.1 FIRST ORDER RSD MODEL IN EXAMPLE 6.2.1  

a) The data presented in the example 6.2.1 is pertaining to orthogonal design of First Order 

Response Surface Model. The estimated values for the parameters and their Confidence 

Intervals at 95% level are presented in the Table 6.5.1. 

Table 6.5.1 

S.No. Parameters Full model 
95% Confidence  

Significance 

Value Lower Upper 

  30.313 27.744 32.881 26.295 

  5.563 2.994 8.131 4.825 

  16.937 14.369 19.506 14.693 

  5.437 2.869 8.006 4.717 

  0.438 -2.131 3.006 0.380 

  0.312 -2.256 2.881 0.271 

 

b) The estimated values for parameters in case of full model and reduced models in different 

approaches is presented in Table 6.5.2 

Table 6.5.2 

S.No. Parameters Full Model Stepwise Forward Backward Nested Bayesian 

  30.313 30.313 30.313 30.313 30.313 30.313 

  5.563 5.563 5.563 5.563 5.563 5.563 

  16.937 16.937 16.937 16.937 16.937 16.937 

  5.437 5.437 5.437 5.437 5.437 5.437 

  0.438 - - - - - 

  0.312 - - - - - 

 

c)  An analysis in case of full and reduced models is presented in Table 6.5.3. 
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Table 6.5.3 

 
Full model Stepwise Forward Backward Nested Bayesian 

SSR 5562.813 5558.19 5558.19 5558.19 5558.188 5558.188 

ESS 212.625 217.25 217.25 217.25 217.25 217.25 

MSE 21.262 18.104 18.104 18.104 18.104 18.104 

R2 value 0.963 0.962 0.962 0.962 0.962 0.962 

 

Note: The reduced model in all the approaches is same and the mean square due to residual and 

R2 values are same.  Cumulative Posterior Probability value for best four models is 1 

 

6.5.2 FIRST ORDER RSD MODEL IN EXAMPLE 6.2.2 

a) The data presented in the example 6.2.2 is pertaining to non-orthogonal design of First 

Order Response Surface Model. The estimated values for the parameters and their 

Confidence Intervals at 95% level are presented in the Table 6.5.4  

Table 6.5.4 

S.No. Parameters Full model 
95% Confidence  

Significance 

Value Lower Upper 

  0.256 -6.110 6.621 0.085 

  -12.996 -15.164 -10.827 -12.644 

  -9.5 -11.581 -7.419 -9.633 

  -1.389 -3.470 0.692 -1.409 

  -1.111 -3.192 0.969 -1.127 

  1.611 -0.470 3.691 1.633 

  0.055 -2.024 2.136 0.056 

  2.666 0.586 4.747 2.704 

  -0.611 -2.692 1.470 -0.619 

  -1.166 -3.247 0.914 -1.183 
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b) The estimated values for parameters in case of full model and reduced models in different 

approaches is presented in Table 6.5.5 

Table 6.5.5 

 S.No. Parameters Full Model Stepwise Forward Backward Nested Bayesian 

  0.256 -2.408 -2.408 -2.408 -2.034 -2.408 

  -12.996 -12.94 -12.94 -12.94 -13.343 -12.94 

  -9.5 -9.503 -9.503 -9.503 -9.481 -9.503 

  -1.389 - - - - - 

  -1.111 - - - - - 

  1.611 - - - - - 

  0.055 - - - - - 

  2.666 2.663 2.663 2.663 2.686 2.663 

  -0.611 - - - - - 

  -1.166 - - - - - 

 

c) An analysis in case of full and reduced models is presented in Table 6.5.6  

Table 6.5.6 

 
Full model Stepwise Forward Backward Nested Bayesian 

SSR 4905.37 4770.49 4770.49 4770.49 4770.49 4770.49 

ESS 296.629 431.513 431.513 431.513 431.513 431.513 

MSE 17.449 18.761 18.761 18.761 18.761 18.761 

R2 value 0.943 0.917 0.917 0.917 0.917 0.917 

 

Note: The reduced model in all the approaches is same and the mean square due to residual and 

R2 values are same.  Cumulative Posterior Probability value for best five models is 0.3733 

6.5.3 SECOND ORDER RSD MODEL IN EXAMPLE 6.4.1 

a) The data presented in the example 6.3.1 is pertaining to second order Response Surface 

Model. The estimated values for the parameters and their Confidence Intervals at 95% 

level are presented in the Table 6.5.7 
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Table 6.5.7 

S.No. Parameters Full model 
95% Confidence  

Significance 

Value Lower Upper 

  74.313 70.557 78.068 50.868 

  5.000 1.245 8.755 3.423 

  3.15 -0.605 6.905 2.156 

  3.975 0.220 7.730 2.721 

  1.862 -1.893 5.618 1.275 

  0.113 -3.643 3.868 0.077 

  -2.088 -5.83 1.668 -1.429 

  -1.725 -5.480 2.030 -1.81 

  -1.363 -5.118 2.393 -0.933 

  1.35 -2.405 5.105 0.924 

  -0.325 -4.080 3.430 -0.222 

b)  The estimated values for parameters in case of full model and reduced models in 

different approaches is presented in Table 6.5.8 

Table 6.5.8 

S.No. Parameters Full Model Stepwise Forward Backward Nested Bayesian 

  74.313 74.313 74.313 74.313 74.313 74.313 

  5.000 5 5 5 5 5 

  3.15 - - 3.15 3.15 3.15 

  3.975 3.975 3.975 3.975 3.975 3.975 

  1.862 - - - - 1.862 

  0.113 - - - - - 

  -2.088 - - - - -2.088 

  -1.725 - - - - -1.725 

  -1.363 - - - - - 

  1.35 - - - - - 

  -0.325 - - - - - 
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   c)  An analysis in case of full and reduced models is presented in Table 6.5.9                 

Table 6.5.9 

 
Full model Stepwise Forward Backward Nested Bayesian 

SSR 1045.16 652.81 652.81 811.57 811.57 984.405 

ESS 170.738 563.088 563.088 404.328 404.328 231.493 

MSE 34.148 43.314 43.314 33.694 33.694 25.721 

R2 value 0.860 0.537 0.537 0.667 0.667 0.810 

 
Note: The reduced model in all the approaches is not same and the mean square error values for 

full and Bayesian reduced models are differ.  It can be noted that the values of parameters β4, β11, 

β22, β33, β44, β12, β13, β14, β23, β24, β34 are insignificant in nested and backward approaches 

whereas in Bayesian β11, β22, β33, β44, β12, β23, β24, β34 are insignificant and in stepwise and 

forward β2, β4, β11, β22, β33, β44, β12, β13, β14, β23, β24, β34  are insignificant. Cumulative Posterior 

Probability value for best five models is 0.1051.   

6.5.3 SECOND ORDER RSD MODEL IN EXAMPLE 6.4.2   

a) The data presented in the example 6.3.2 is pertaining to second order Response Surface 

Model. The estimated values for the parameters and their Confidence Intervals at 95% 

level are presented in the Table 6.5.10. 

Table 6.5.10 

S.No. Parameters Full model 
95% Confidence  

Significance 

Value Lower Upper 

  50.75 42.597 58.902 19.811 

  5 -3.152 13.152 1.952 

  10 1.847 18.152 3.904 

  0.5 -7.652 8.652 0.195 
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  -0.25 -11.779 11.279 -0.069 

  -1.5 -9.652 6.652 -0.586 

  -0.5 -8.652 7.652 -0.195 

  -1 -9.152 7.152 -0.390 

 

b) The estimated values for parameters in case of full model and reduced models in different 

approaches is presented in Table 6.5.11 

 

 

 

 

 

Table 6.5.11 

S.No. Parameters Full Model Stepwise Forward Backward Nested Bayesian 

  50.75 50.906 50.906 50.906 50.815 50.906 

  5 5.484 5.484 5.484 5.348 5.484 

  10 10.484 10.484 10.484 9.618 10.484 

  0.5 - - - - - 

  -0.25 - - - - - 

  -1.5 - - - - - 

  -0.5 - - - - - 

  -1 - - - - - 

 

c)  An analysis in case of full and reduced models is presented in table 6.5.12  

Table 6.5.12 

 
Full model Stepwise Forward Backward Nested Bayesian 

SSR 861.977 841.821 841.821 841.821 841.821 841.821 
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ESS 78.75 98.906 98.906 98.906 98.906 98.906 

MSE 26.25 12.363 12.363 12.363 12.363 12.363 

R2 value 0.916 0.895 0.895 0.895 0.895 0.895 

 
Note:  The reduced models in all the approached is same and the mean square due to residual and 

R2 values are same.  Cumulative Posterior Probability value for best five models is 0.3502.   

6.5.4 SECOND ORDER RSD MODEL IN EXAMPLE 6.4.3   

a) The data presented in the example 6.4.3 is pertaining to second order Central Composite 

Response Surface Design Model. The estimated values for the parameters and their 

Confidence Intervals at 95% level are presented in the Table 6.5.13 

Table 6.5.13 

S.No. Parameters Full model 
95% Confidence  

Significance 

Value Lower Upper 

  21.447 20.486 22.408 49.725 

  1.318 0.960 1.676 8.197 

  2.691 2.332 3.049 16.732 

  2.114 1.755 2.472 13.144 

  1.26 0.902 1.619 7.839 

  0.421 -0.146 0.988 1.655 

  -1.58 -2.147 -1.013 -6.213 

  -1.53 -2.097 -0.963 -6.016 

  -0.93 -1.496 -0.363 -3.656 

  0.75 0.349 1.151 4.172 

  0.3 -0.101 0.701 1.669 

  0.175 -0.226 0.576 0.973 

  0.6 0.199 1.001 3.337 

  0.475 0.074 0.876 2.642 

  -0.075 -0.476 0.326 -0.417 
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b) The estimated values for parameters in case of full model and reduced models in different 

approaches is presented in Table 6.5.14 

Table 6.5.14 

 S.No. Parameters Full Model Stepwise Forward Backward Nested Bayesian 

  21.447 21.783 21.783 21.783 21.447 21.447 

  1.318 1.318 1.318 1.318 1.318 1.318 

  2.691 2.691 2.691 2.691 2.691 2.691 

  2.114 2.114 2.114 2.114 2.114 2.114 

  1.26 1.26 1.26 1.26 1.26 1.26 

  0.421 - - - 0.421 0.421 

  -1.58 -1.58 -1.58 -1.58 -1.58 -1.58 

  -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 

  -0.93 -0.93 -0.93 -0.93 -0.93 -0.93 

  0.75 0.75 0.75 0.75 0.75 0.75 

  0.3 - - - 0.3 0.3 

  0.175 - - - - - 

  0.6 0.6 0.6 0.6 0.6 0.6 

  0.475 0.475 0.475 0.475 0.475 0.475 

  -0.075 - - - - - 

                    

c) An analysis in case of full and reduced models is presented in table 6.5.15   

Table 6.5.15 

 
Full model Stepwise Forward Backward Nested Bayesian 

SSR 368.053 364.618 364.618 364.618 367.473 367.473 

ESS 5.169 8.604 8.604 8.604 5.749 5.749 

MSE 0.517 0.615 0.615 0.615 0.479 0.479 

R2 value 0.986 0.977 0.977 0.977 0.985 0.985 
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Note: The value of the parameters β11, β13, β14, β23 are insignificant in stepwise, Forward and 

Backward approaches whereas in Nested and Bayesian β11, β14, β23 are insignificant. The reduced 

model in Nested and Bayesian approaches are same. The mean square error values and R2 values 

are also same in proposed methods. Cumulative Posterior Probability value for best five models 

is 0.5096. 

6.6 PROPERTIES OF BAYESIAN ESTIMATED PARAMETER  

An attempt is made to study the properties of Bayes estimated parameter like Mean, 

variance, consistency and sufficiency of estimator are derived for a design model and presented 

below.  

THEOREM 6.6.1: In a linear design model, Bayes estimator of a parameter iβ̂  is an unbiased 

estimator i.e. β)β̂E(   

Proof: The vector of estimated parameter follows multivariate normal distribution i.e. 
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THEOREM 6.6.2: The Variance of Bayes estimator of parameter iβ̂  is Var ( iβ̂ ) = σ2/ 2X i  

Proof: The second non-central moment of β is  
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Hence the variance of the estimator is  Var ( iβ̂ ) = σ2/ 
2X i                            (6.6.2) 

THEOREM 6.6.3: Bayes estimator iβ̂  is a consistent estimator.  

Proof: Using Chebychev’s inequality 
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THEOREM 6.6.4: Sufficient statistic of a Bayesian estimator β is ∑Xi
2. 
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                  Hence the sufficient estimator for β̂  is 2

iΣX .     (6.6.4) 

6.7 REMARKS ON BAYESIAN SELECTION OF MODEL 

1. In the maximum likelihood estimator, the analytical likelihood function and behavior of 

likelihood function are crucial. 

2. The Maximum Likelihood estimator and Bayesian estimator will result same. 

3. The goal of the Bayesian estimation is to characterize the posterior distribution of 

parameters, which is defined as the distribution of parameters conditional on data.  

4. Bayesian methods don’t require an analytical likelihood function.  

5. When the prior is uniform, the posterior is the same as the likelihood (as a function of 

parameters). The tighter the prior, the less the posterior reflects information from the 

data.  

6. The Bayesian estimator draws a large sample, which can be used to compute the 

parameters of interest using Gibbs sampling algorithm. 
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7. Bayesian approach does not provide any formulae to estimate missing values even in case 

of single missing observation.  

8. It is difficult to estimate the missing values and parameters using Bayesian approach 

manually. 

9. Bayesian approach depends on the priors and posteriors of the parameters and 

observations in the design model.  

10. Bayes method is complicated when compared to least squares method because Bayes 

procedure depends on distribution for generation of samples. 

11. The confidence intervals for the vector of parameters β with (1 − α) 100% confidence 

level can be evaluated as  Ck,tβ ii/2i ˆ . Where Cii can be obtained from (XX)-1 

matrix.  

12. The bias due to the estimated missing value can be obtained from the difference of two 

error sum of squares which are evaluated with and without imposing the condition H0 

αi=0.  

13. Bayesian approach reduces the size of the original model by selecting the significant 

factors from the original set of variables based on the posterior probability values. 

14. Even though the manual computation is very difficult and time consuming Bayesian 

approach gives same results when compared with other traditional approaches like 

Stepwise, Forward, Backward elimination and Nested. 

15. In Bayesian approach, selecting the variables are more when compared to other methods 

as it includes the variables based on their probability value. 

16. At initial point the estimation value of the parameter uses least square method. 
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7.   SUMMARY OF FINDINGS AND FUTURE SCOPE 

 

7.1   OBJECTIVES OF THE PROJECT 

 

The objectives mentioned in the major research project proposal submitted to UGC 

entitled on “Reduction of Dimensionality of Response Surface Design Model - Bayesian 

Approach” are  

1. Addressing the problems involved in the reduction of dimensionality in Response Surface 

Design model. 

2. Deriving optimal methods to reduce the dimensionality of the Response Surface Design 

model with minimum loss in the information. 

3. Construction of optimal response surface design model (first and second orders) and 

carrying out its analysis. 

4. Examining the reduced response surface model for some specific application / 

experimental data. 

 

7.2  SUMMARY OF FINDINGS 

All the objectives mentioned in the proposal submitted to UGC entitled Reduction of 

Dimensionality of Response Surface Design Model-Bayesian Approach are achieved. The 

summarized conclusions on the research work presented in this thesis are,  

1. A complete literature survey is conducted on the reduction of dimensionality of linear 

regression model and complete literature survey on the reduction of Response Surface 
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Design Model. All the methods are studied and tested with suitable examples and 

evaluated their analysis.  

2. It can be noted that even though there are several methods available for selecting the best 

model, most of the research is on selecting the best regression model but no specific 

method was developed for the reduction of dimensionality of response surface design 

model.   

3. This Project report provides three new approaches to reduce the dimensionality of 

response surface design model, one is using variance component indices, second one is 

using nested approach and the third one is in Bayesian approach.   

4. The variance component indices are derived for first and second order models which are 

used for ranking to reduce the size of the response surface design models under with and 

without restrictions on the moment matrix to reduce the dimensionality of the model. 

5. Nested Approach provides best selection model when compared with Step-wise, Forward 

and Back ward approaches. Nested Approach is avoids the problem of Multi-collinearity. 

6. Derived the probability distributions for priors and posterior of parameters to estimate the 

parameters and evaluated posterior probabilities for all possible models and selected best 

model based on maximum posterior probability in case of first and second order response 

surface design models to reduce the dimensionality of the model. 

7. Bayesian approach reduces the size of the original model by selecting the significant 

factors from the original set of variables based on the posterior probability values. It 

provides more efficient result for selecting the optimal model when compared with all the 
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classical methods like, All possible, Forward, Backward and Step-wise procedures and 

Nested approach. 

8. The properties for the Bayesian estimated parameters like variance, unbiasedness, 

consistency, sufficiency are derived. An analysis of Bayesian selected model and 

confidence interval for the parameters are also presented. Even though the manual 

computation is difficult and time consuming Bayesian approach provides same / better 

results when compared with other traditional approaches. 

9. In Bayesian approach, is a simulated process and depends on distribution for generation 

of samples. Selecting the variables are more when compared to other methods as it 

includes the variables based on their probability value and it depends on the priors and 

posteriors of the parameters and observations in the design model.  

10. The approaches compared with respect to estimated values for parameters, their 

confidence intervals, reduced models, Mean square error and R2 values are presented. 

7.3 FUTURE SCOPE 

 Model selection plays a major role in the multi-factor experiments.  Dimension 

Reduction refers to the process of converting a set of data having vast dimensions into data with 

lesser dimensions ensuring that it conveys similar information concisely.  These techniques are 

typically used while solving machine learning problems to obtain better features for a 

classification or regression task.  It can reduce ‘n’ dimensions of data set to ‘k’ dimensions (k < 

n). These k dimensions can be directly identified (filtered) or can be a combination of 

dimensions (weighted averages of dimensions) or new dimension(s) that represent existing 

multiple dimensions well.  
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APPENDIX  

 

1  R code to find the initial parameters corresponding to the data presented  

        y=matrix(c(8,9,34,52,16,22,45,60,6,10,30,50,15,21,44,63),16,1); 

        x=matrix(c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1, 

  -1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1, 

  -1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1, 

   1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1, 

   1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1),16,5); 

fit1<-lm(y~x); 

summary(fit1); 

confint(fit1,level=0.95); 

#Load BMA package to find posterior values. 

bicreg(x,y);  

summary(bicreg(x,y))  

 

2  R code to find the initial parameters corresponding to the data presented  

 y=matrix(c(5,2,8,-15,-6,-10,-28,-19,-23,-13,-17,-7,-23,-31,-23,-34,-37,-29,-27,-27,-30,-35,-   

     35,-38,-39,-40,-41),27,1); 

X=matrix(c(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2, 

   0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2, 

   0,0,0,1,1,1,2,2,2,1,1,1,2,2,2,0,0,0,2,2,2,0,0,0,1,1,1, 

   0,0,0,1,1,1,2,2,2,2,2,2,0,0,0,1,1,1,1,1,1,2,2,2,0,0,0, 

   0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2, 

   0,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1,2,0,2,0,1,2,0,1,2,0,1, 

   0,1,2,0,1,2,0,1,2,2,0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,2,0, 

   0,1,2,2,0,1,1,2,0,0,1,2,2,0,1,1,2,0,0,1,2,2,0,1,1,2,0, 

   0,1,2,2,0,1,1,2,0,1,2,0,0,1,2,2,0,1,2,0,1,1,2,0,0,1,2),27,9); 

fit2<-lm(y~X); 

summary(fit2); 

confint(fit2,level=0.95); 

bicreg(X,y);  

summary(bicreg(X,y))  

 

3  R code to find the initial parameters corresponding to the data presented  

 y=matrix(c(53.3,78,62.4,78.9,75.9,75.4,71.3,84.4,64.5,67.5,72.8,85.3,71.4,83.3,82.9,81.7),16,1); 

X=matrix(c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1, 

    -1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1, 

       -1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1, 

       -1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1, 

    1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

         1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

         1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

         1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

         1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1, 

         1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1, 
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         1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1, 

         1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1, 

          1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1, 

         1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1),16,14); 

fit3<-lm(y~X); 

summary(fit3); 

confint(fit3,level=0.95); 

bicreg(X,y);  

summary(bicreg(X,y))  

 

4  R code to find the initial parameters corresponding to the data presented  
 y=matrix(c(32,46,57,65,36,48,57,50,44,53,56),11,1); 

 X=matrix(c(-1,1,-1,1,-1,1,-1,0,0,0,0, 

      -1,-1,1,1,-1,-1,1,0,0,0,0, 

               -1,-1,-1,-1,1,1,1,0,0,0,0, 

          1,1,1,1,1,1,1,0,0,0,0, 

          1,1,1,1,1,1,1,0,0,0,0, 

    1,1,1,1,1,1,1,0,0,0,0, 

    1,-1,-1,1,1,-1,-1,0,0,0,0, 

    1,-1,1,-1,-1,1,-1,0,0,0,0, 

    1,1,-1,-1,-1,-1,1,0,0,0,0),11,9); 

fit4<-lm(y~X); 

summary(fit4); 

confint(fit4,level=0.95);   

 

5  R code to find the initial parameters corresponding to the data presented  
y=matrix(c(27.6,16.6,15.4,17.4,17,19,17.4,12.6,18.6,22.4,21.4,14,24,15.6,13,14.4,22.6,23.4,  

20.6,22.6,13.4,20.6,15.6,21,17.6),25,1); 

X=matrix(c(1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,1.414,-1.414,0,0,0,0,0,0, 

        1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,0,0,0,1.414,-1.414,0,0,0,0, 

      1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,0,0,0,0,0,1.414,-1.414,0,0, 

   1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,0,0,0,0,0,0,0,1.414,-1.414, 

              1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1.999,1.999,0,0,0,0,0,0, 

              1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1.999,1.999,0,0,0,0, 

                    1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1.999,1.999,0,0, 

              1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1.999,1.999, 

              1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0, 

              1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0, 

              1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0, 

              1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0, 

              1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,0,0,0,0,0,0,0,0,0, 

              1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,0,0,0,0,0,0,0,0,0),25,15); 

fit5<-lm(y~X); 

summary(fit5); 

confint(fit5,level=0.95); 

bicreg(X,y);  
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summary(bicreg(X,y))  

 

 

6 Win-BUG Program to find the posterior estimates of parameters corresponding to the data 

presented 

model 

     { 

    for(i in 1:16) 

    { 

      mu.y[i]<- beta0+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*x4[i]+beta5*x5[i]  

      y[i] ~ dnorm(mu.y[i],prec) 

      } 

mu ~ dnorm(30.3125,24.064325) 

beta0 ~ dnorm(30.313,24.064325) 

beta1 ~ dnorm(5.563, 24.064325) 

beta2 ~ dnorm(16.937, 24.064325) 

beta3 ~ dnorm(5.437, 24.064325) 

beta4 ~ dnorm(0.438, 24.064325) 

beta5 ~ dnorm(0.312, 24.064325) 

prec ~ dgamma(7.5,0.00036) 

s2<-1/prec  

} 

list(y=c(8,9,34,52,16,22,45,60,6,10,30,50,15,21,44,63),   

x1=c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1), 

x2=c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1), 

x3=c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1), 

x4=c(1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1), 

x5=c(1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1)) 

list(beta0 = 30.313, beta1 = 5.563, beta2 = 16.937, beta3 = 5.437, beta4 = 0.438, 

beta5 = 0.312, prec = 0.00260, mu =30.3125) 

Output: 

 

Node 
Posterior  

Mean 

Posterior 

 S.d 

Posterior  

Median 
Start Sample 

beta0 30.31 0.1951 30.31 1 100000 

beta1 5.562 0.1944 5.563 1 100000 

beta2 16.94 0.1949 16.94 1 100000 

beta3 5.436 0.1942 5.437 1 100000 

beta4 0.4381 0.1948 0.4388 1 100000 

beta5 0.3126 0.1944 0.3123 1 100000 

Mu 30.31 0.2036 30.31 1 100000 

Prec 0.1432 0.0365 0.14 1 100000 

 

7 Win-BUG Program to find the posterior estimates of parameters corresponding to the 

data presented  

model 
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     { 

    for(i in 1:27) 

 { 

  mu.y[i]<-  

beta0+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*x4[i]+beta5*x5[i]+beta6*x6[i]+be

t    

a7*x7[i]+beta8*x8[i]+beta9*x9[i]  

            y[i] ~ dnorm(mu.y[i],prec) 

 } 

 mu ~ dnorm(-22.7,7.4074) 

beta0 ~ dnorm(0.256,7.4074) 

beta1 ~ dnorm(-12.996,4.3478) 

beta2 ~ dnorm(-9.5,4.4444) 

beta3 ~ dnorm(-1.389,4.4444) 

beta4 ~ dnorm(-1.111,4.4444) 

beta5 ~ dnorm(-1.611,4.4444) 

beta6 ~ dnorm(0.055,4.4444) 

beta7 ~ dnorm(2.666,4.4444) 

beta8 ~ dnorm(-0.611,4.4444) 

beta9 ~ dnorm(-1.166,4.4444) 

prec ~ dgamma(13,0.00041) 

s2<-1/prec  

} 

list(y=c(5,2,8,-15,-6,-10,-28,-19,-23,-13,-17,-7,-23,-31,-23,-34,-37,-29,-27,-27,-30,-35,- 

35,-38,-39,-40,-41),   

x1=c(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2), 

x2=c(0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2), 

x3=c(0,0,0,1,1,1,2,2,2,1,1,1,2,2,2,0,0,0,2,2,2,0,0,0,1,1,1), 

x4=c(0,0,0,1,1,1,2,2,2,2,2,2,0,0,0,1,1,1,1,1,1,2,2,2,0,0,0), 

x5=c(0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2), 

x6=c(0,1,2,0,1,2,0,1,2,1,2,0,1,2,0,1,2,0,2,0,1,2,0,1,2,0,1), 

x7=c(0,1,2,0,1,2,0,1,2,2,0,1,2,0,1,2,0,1,1,2,0,1,2,0,1,2,0), 

x8=c(0,1,2,2,0,1,1,2,0,0,1,2,2,0,1,1,2,0,0,1,2,2,0,1,1,2,0), 

x9=c(0,1,2,2,0,1,1,2,0,1,2,0,0,1,2,2,0,1,2,0,1,1,2,0,0,1,2)) 

list(beta0 = 0.256,beta1 = - 12.996,beta2 = - 9.5,beta3 = - 1.389, beta4 = -1.111, beta5 

= 1.611, beta6 = 0.055, beta7 = 2.666, beta8 = - 0.611, beta9 = - 1.166, prec = 0.005,mu = - 22.7) 

Output: 

 

Node 
Posterior  

Mean 

Posterior 

 S.d 

Posterior  

Median 
Start Sample 

beta0 0.4174 0.3517 0.4158 1 100000 

beta1 -12.78 0.3742 -12.78 1 100000 

beta2 -9.329 0.3682 -9.329 1 100000 

beta3 -1.219 0.368 -1.219 1 100000 

beta4 -0.9415 0.3663 -0.9412 1 100000 

beta5 -0.3229 0.3954 -0.3183 1 100000 
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beta6 0.2252 0.3673 0.226 1 100000 

beta7 2.835 0.3667 2.834 1 100000 

beta8 -0.4328 0.365 -0.4329 1 100000 

beta9 -0.984 0.366 -0.9865 1 100000 

Mu -22.7 0.3673 -22.7 1 100000 

Prec 0.1337 0.0284 0.1315 1 100000 

 

8.  Win-BUG Program to find the posterior estimates of parameters corresponding to the 

data presented 

model 

    { 

      for(i in 1:16) 

     { 

mu.y[i]<- 

beta0+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*x4[i]+beta5*x1x2[i]+beta6*x

1x3[i]+beta7*x1x4[i]+beta8*x2x3[i]+beta9*x2x4[i]+beta10*x3x4[i]  

       y[i] ~ dnorm(mu.y[i],prec) 

       } 

mu ~ dnorm(74.3125,5.06624) 

beta0 ~ dnorm(74.313,5.06624) 

beta1 ~ dnorm(5,5.06624) 

beta2 ~ dnorm(3.15,5.06624) 

beta3 ~ dnorm(3.975,5.06624) 

beta4 ~ dnorm(1.862,5.06624) 

beta5 ~ dnorm(0.113,5.06624) 

beta6 ~ dnorm(-2.088,5.06624) 

beta7 ~ dnorm(-1.725,5.06624) 

beta8 ~ dnorm(-1.363,5.06624) 

beta9 ~ dnorm(1.35,5.06624) 

beta10 ~ dnorm(-0.325,5.06624) 

prec ~ dgamma(7.5,0.00191) 

s2<-1/prec  

} 

    list(y=c(53.3,78,62.4,78.9,75.9,75.4,71.3,84.4,64.5,67.5,72.8,85.3,71.4,83.3,82.9,81.7),   

x1=c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1), 

x2=c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1), 

x3=c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1), 

x4=c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1), 

x1x2=c(1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1), 

x1x3=c(1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1), 

x1x4=c(1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1), 

x2x3=c(1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1), 

x2x4=c(1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1), 

x3x4=c(1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1)) 

  list(beta0 = 74.313, beta1 =5, beta2 =3.15, beta3 = 3.975, beta4 = 1.862, beta5 =  

  0.113, beta6 = -2.088, beta7 = -1.725, beta8 = - 1.363, beta9 = 1.35, beta10 =  
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  0.325,  prec = 0.01234,mu = 74.3125) 

 

Output: 

 

Node 
Posterior  

Mean 

Posterior 

 S.d 

Posterior  

Median 
Start Sample 

beta0 74.31 0.3625 74.31 1 100000 

 beta1 5.00 0.3622 4.999 1 100000 

beta2 3.149 0.364 3.15 1 100000 

beta3 3.974 0.3637 3.975 1 100000 

beta4 1.86 0.3626 1.86 1 100000 

beta5 0.1124 0.3631 0.1139 1 100000 

beta6 -2.089 0.3634 -2.09 1 100000 

beta7 -1.725 0.3618 -1.725 1 100000 

beta8 -1.366 0.3641 -1.365 1 100000 

beta9 1.349 0.3637 1.349 1 100000 

beta10 -0.3263 0.3633 -0.3249 1 100000 

Mu 74.31 0.444 74.31 1 100000 

Prec 0.1603 0.0416 0.1565 1 100000 

 

9  Win-BUG Program to find the posterior estimates of parameters corresponding to the 

data presented 

model 

    { 

     for(i in 1:11) 

    { 

mu.y[i]<- 

beta0+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*x3x3[i]+beta5*x1x2[i]+beta6*

x1x3[i]+beta7*x2x3[i]  

    y[i] ~ dnorm(mu.y[i],prec) 

} 

mu ~ dnorm(49.45455,8.55207) 

beta0 ~ dnorm(50.750,8.55207) 

beta1 ~ dnorm(5,23.51818) 

beta2 ~ dnorm(10,23.51818) 

beta3 ~ dnorm(0.5,23.51818) 

beta4 ~ dnorm(-0.250,23.51818) 

beta5 ~ dnorm(-1.5,23.51818) 

beta6 ~ dnorm(-0.5,23.51818) 

beta7 ~ dnorm(-1,23.51818) 

prec ~ dgamma(5,0.00232) 

s2<-1/prec  

} 

list(y=c(32,46,57,65,36,48,57,50,44,53,56),   

x1=c(-1,1,-1,1,-1,1,-1,0,0,0,0), 

x2=c(-1,-1,1,1,-1,-1,1,0,0,0,0), 
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x3=c(-1,-1,-1,-1,1,1,1,0,0,0,0), 

x3x3=c(1,1,1,1,1,1,1,0,0,0,0), 

x1x2=c(1,-1,-1,1,1,-1,-1,0,0,0,0), 

x1x3=c(1,-1,1,-1,-1,1,-1,0,0,0,0), 

x2x3=c(1,1,-1,-1,-1,-1,1,0,0,0,0)) 

               list(beta0 = 50.75, beta1 =5, beta2 =10, beta3 = 0.5, beta4 = - 0.250, beta5 = - 1.5,  

           beta6 = - 0.5, beta7 = -1, prec = 0.01063,mu = 49.45455) 

 

Output: 

Node 
Posterior  

Mean 

Posterior 

 S.d 

Posterior  

Median 
Start Sample 

beta0 50.75 0.2986 50.75 1 100000 

beta1 5.001 0.1986 5.001 1 100000 

beta2 10.00 0.1991 10.00 1 100000 

beta3 0.4992 0.1987 0.4992 1 100000 

beta4 -0.2497 0.1999 -0.2497 1 100000 

beta5 -1.500 0.1986 -1.500 1 100000 

beta6 -0.5008 0.199 -0.5007 1 100000 

beta7 -0.9996 0.1983 -0.9992 1 100000 

Mu 49.46 0.3423 49.46 1 100000 

Prec 0.2571 0.0795 0.2486 1 100000 

 

10  Win-BUG Program to find the posterior estimates of parameters corresponding to the 

data presented  
model 

    { 

     for(i in 1:25) 

     { 

mu.y[i]<- 

beta0+beta1*x1[i]+beta2*x2[i]+beta3*x3[i]+beta4*x4[i]+beta5*x1x1[i]+ 

beta6*x2x2[i]+beta7*x3x3[i]+beta8*x4x4[i]+beta9*x1x2[i]+beta10*x1x3[i]+bet

a11*x1x4[i]+beta12*x2x3[i]+ beta13*x2x4[i]+ beta14*x3x4[i] 

  y[i] ~ dnorm(mu.y[i],prec) 

} 

mu ~ dnorm(18.552,0.62204) 

beta0 ~ dnorm(21.447,0.62204) 

beta1 ~ dnorm(1.318,0.77759) 

beta2 ~ dnorm(2.691,0.77759) 

beta3 ~ dnorm(2.114,0.77759) 

beta4 ~ dnorm(1.260,0.77759) 

beta5 ~ dnorm(0.421,1.94457) 

beta6 ~ dnorm(-1.580,1.94457) 

beta7 ~ dnorm(-1.530,1.94457) 

beta8 ~ dnorm(-0.930,1.94457) 

beta9 ~ dnorm(0.750,0.97193) 

beta10 ~ dnorm(0.3,0.97193) 
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beta11 ~ dnorm(0.175,0.97193) 

beta12 ~ dnorm(0.6,0.97193) 

beta13 ~ dnorm(0.475,0.97193) 

beta14 ~ dnorm(-0.075,0.97193) 

prec ~ dgamma(12,0.00543) 

s2<-1/prec  

} 

list(y=c(27.6,16.6,15.4,17.4,17,19,17.4,12.6,18.6,22.4,21.4,14,24,15.6,13,14.4,22.                  

6,23.4,20.6,22.6,13.4,20.6,15.6,21,17.6),   

x1=c(1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,1.414,-1.414,0,0,0,0,0,0), 

x2=c(1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,0,0,0,1.414,-1.414,0,0,0,0), 

x3=c(1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,0,0,0,0,0,1.414,-1.414,0,0), 

x4=c(1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,0,0,0,0,0,0,0,1.414,-1.414), 

x1x1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1.999,1.999,0,0,0,0,0,0), 

                        x2x2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, 1.999,1.999,0,0,0,0), 

x3x3=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, 1.999,1.999,0,0), 

x4x4=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1.999,1.999), 

x1x2=c(1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,0,0,0,0,0,0,0,0,0), 

x1x3=c(1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,0,0,0,0,0,0,0,0,0), 

x1x4=c(1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,0,0,0,0,0,0,0,0,0), 

x2x3=c(1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,0,0,0,0,0,0,0,0,0), 

x2x4=c(1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,0,0,0,0,0,0,0,0,0), 

x3x4=c(1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,0,0,0,0,0,0,0,0,0)) 

list(beta0 =21.447, beta1 =1.318, beta2 =2.691, beta3 = 2.114, beta4 =1.260, beta5  

= 0.421, beta6 = - 1.580, beta7 = - 1.530, beta8 = - 0.930, beta9=0.750,  

beta10=0.3, beta11=0.175, beta12=0.6, beta13=0.475, beta14=- 0.075, prec =  

0.06430,mu = 18.552) 

Output: 

Node 
Posterior  

Mean 

Posterior 

 S.d 

Posterior  

Median 
Start Sample 

beta0 20.87 0.4989 20.86 1 100000 

beta1 1.350 0.2094 1.350 1 100000 

beta2 2.435 0.2143 2.435 1 100000 

beta3 2.215 0.2137 2.215 1 100000 

beta4 1.317 0.2158 1.317 1 100000 

beta5 0.2281 0.3194 0.227 1 100000 

beta6 -1.64 0.321 0.00104 1 100000 

beta7 -0.893 0.3244 -0.8885 1 100000 

beta8 -0.483 0.3413 -0.4793 1 100000 

beta9 0.7509 0.2257 0.7517 1 100000 

beta10 0.2993 0.2267 0.2991 1 100000 

beta11  0.1744 0.2262 0.1746 1 100000 

beta12 0.5989 0.2268 0.5993 1 100000 

beta13 0.4755 0.2263 0.4757 1 100000 

beta14 -0.0758 0.2263 -0.0755 1 100000 

Mu 18.55 1.268 18.55 1 100000 
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Prec 1.222 0.2889 1.199 1 100000 
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